To determine whether IDH1 mutations are present in primary and relapsed (local and distal) conventional central chondrosarcomas; and secondly, to assess if loss of p16/CDKN2A is associated with tumour grade progression, 102 tumour samples from 37 patients, including material from presenting and relapse events, were assessed. All wild-type cases for IDH1 R132 substitutions were also tested for IDH2 R172 and R140 alterations. The primary tumour and the most recent relapse sample were tested for p16/CDKN2A by interphase fluorescence in situ hybridisation. An additional 120 central cartilaginous tumours from different patients were also tested for p16/CDKN2A copy number. The study shows that if an IDH1 mutation were detected in a primary central chondrosarcoma, it is always detected at the time of presentation, and the same mutation is detected in local recurrences and metastatic events. We show that p16/CDKN2A copy number variation occurs subsequent to the IDH1 mutation, and confirm that p16/CDKN2A copy number variation occurs in 75% of high grade central chondrosarcomas, and not in low grade cartilaginous tumours. Finally, p16/CDKN2A copy number variation is seen in both the IDH1 wild-type and mutant cartilaginous central tumours.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4325180PMC
http://dx.doi.org/10.1007/s00428-014-1685-4DOI Listing

Publication Analysis

Top Keywords

p16/cdkn2a copy
20
copy number
20
number variation
12
central chondrosarcomas
8
tested p16/cdkn2a
8
cartilaginous tumours
8
idh1 mutation
8
mutation detected
8
variation occurs
8
p16/cdkn2a
7

Similar Publications

Background: The aim of this study was to analyze and compare melanoma gene expression profiles in TCGA database through the application of different genes to explore the pathogenesis of melanoma. Furthermore, we confirmed the extent of the role of KYNU in melanoma and whether it can be a potential target for the diagnosis and treatment of melanoma.

Methods: The gene expression profiles of melanoma samples were downloaded from TCGA database, and matrix files were synthesized to screen differential genes.

View Article and Find Full Text PDF

The expression of p16/CDKN2A, the second most commonly inactivated tumour suppressor gene in cancer, is lost in the majority of chordomas. However, the mechanism(s) leading to its inactivation and contribution to disease progression have only been partially addressed using small patient cohorts. We studied 384 chordoma samples from 320 patients by immunohistochemistry and found that p16 protein was lost in 53% of chordomas and was heterogeneously expressed in these tumours.

View Article and Find Full Text PDF

Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV) associated cancer characterized by a poor prognosis and a high level of lymphocyte infiltrate. Genetic hallmarks of NPC are not completely known but include deletion of the p16 () locus and mutations in NF-κB pathway components, with a relatively low total mutational load. To better understand the genetic landscape, an integrated genomic analysis was performed using a large clinical cohort of treatment-naïve NPC tumor specimens.

View Article and Find Full Text PDF

Unlabelled: Dermatofibrosarcoma protuberans (DFSP) is a rare and indolent cutaneous sarcoma. At times, a fibrosarcomatous transformation marked by a more aggressive clinical behavior may be present. We investigated the natural history and the molecular bases of progression from classic DFSP to the fibrosarcomatous form (FS-DFSP), looking, retrospectively, at the outcome of all patients affected by primary DFSP treated at our institution from 1993 to 2012 and analyzing the molecular profile of 5 DFSPs and 5 FS-DFSPs by an integrated genomics approach (whole transcriptome sequencing, copy number analysis, FISH, qRT-PCR, IHC).

View Article and Find Full Text PDF

Metastasis-associated MCL1 and P16 copy number alterations dictate resistance to vemurafenib in a BRAFV600E patient-derived papillary thyroid carcinoma preclinical model.

Oncotarget

December 2015

Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Cancer Biology and Angiogenesis, Cancer Research Institute (CRI), Cancer Center, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

BRAF(V600E) mutation exerts an essential oncogenic function in many tumors, including papillary thyroid carcinoma (PTC). Although BRAF(V600E) inhibitors are available, lack of response has been frequently observed. To study the mechanism underlying intrinsic resistance to the mutant BRAF(V600E) selective inhibitor vemurafenib, we established short-term primary cell cultures of human metastatic/recurrent BRAF(V600E)-PTC, intrathyroidal BRAF(V600E)-PTC, and normal thyroid (NT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!