Breast cancer is the most common women's cancer in the world. There is considerable current interest in developing anticancer agents with a new mode of action because of the development of resistance by cancer cells towards current anticancer drugs. Mamalian cells have been shown to contain small, cationic, microbicidal peptides. Antimicrobial peptides have drawn attention as a promising alternative to current antitumor agents. Such peptides have been isolated both from animal and human platelets and have been termed platelets microbicidal proteins (PMP). The aim of this work was to study antitumor activity of PMP in vivo on the model of mouse breast cancer in comparison with antitumor hexapeptide Arg-alpha-Asp-Lys-Val-Tyr-Arg (Immunofan). We demonstrated that the tumors treated with PMP were significant smaller than the control groups (P < 0.05). In experiments in vivo using CBRB-Rb(8.17)1Iem mice with transplanted tumors PMP inhibited tumor growth during the treatments and after its discontinuation. These findings indicate that PMP can exert antitumor effects. Therefore, PMP may be used for the development of therapy for the intervention of breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12253-014-9812-8DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
antitumor activity
8
cancer
5
evaluation antitumor
4
activity platelet
4
platelet microbicidal
4
microbicidal protein
4
protein model
4
model transplanted
4
transplanted breast
4

Similar Publications

Management of nausea and vomiting induced by antibody-drug conjugates.

Breast Cancer

January 2025

Advanced Cancer Translational Research Institute, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.

Antibody-drug conjugates (ADCs) are an emerging class of anticancer therapy that combines the specificity and long circulation half-life of monoclonal antibodies with the cytotoxic potency of the payload connected through a chemical linker. The optimal management of toxicities is crucial for improving quality of life in patients undergoing ADCs and for avoiding improper dose reductions or discontinuations. This article focuses on the characteristics and management of nausea and vomiting (NV) induced by three ADCs: trastuzumab deruxtecan (T-DXd), sacituzumab govitecan (SG), and datopotamab deruxtecan (Dato-DXd).

View Article and Find Full Text PDF

Purpose: Trophoblast cell-surface antigen 2 (Trop2) is overexpressed in various solid tumors and contributes to tumor progression, while its expression remains low in normal tissues. Trop2-targeting antibody-drug conjugate (ADC), sacituzumab govitecan-hziy (Trodelvy), has shown efficacy in targeting this antigen. Leveraging the enhanced specificity of ADCs, we conducted the first immunoPET imaging study of Trop2 expression in gastric cancer (GC) and triple-negative breast cancer (TNBC) models using Zr-labeled Trodelvy ([Zr]Zr-DFO-Trodelvy).

View Article and Find Full Text PDF

Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.

View Article and Find Full Text PDF

SHP2 promotes the epithelial-mesenchymal transition in triple negative breast cancer cells by regulating β-catenin.

J Cancer Res Clin Oncol

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.

Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!