Tumor-induced myeloid dysfunction and its implications for cancer immunotherapy.

Cancer Immunol Immunother

Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA.

Published: January 2015

Immune function relies on an appropriate balance of the lymphoid and myeloid responses. In the case of neoplasia, this balance is readily perturbed by the dramatic expansion of immature or dysfunctional myeloid cells accompanied by a reciprocal decline in the quantity/quality of the lymphoid response. In this review, we seek to: (1) define the nature of the atypical myelopoiesis observed in cancer patients and the impact of this perturbation on clinical outcomes; (2) examine the potential mechanisms underlying these clinical manifestations; and (3) explore potential strategies to restore normal myeloid cell differentiation to improve activation of the host antitumor immune response. We posit that fundamental alterations in myeloid homeostasis triggered by the neoplastic process represent critical checkpoints that govern therapeutic efficacy, as well as offer novel cellular-based biomarkers for tracking changes in disease status or relapse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4282948PMC
http://dx.doi.org/10.1007/s00262-014-1639-3DOI Listing

Publication Analysis

Top Keywords

tumor-induced myeloid
4
myeloid dysfunction
4
dysfunction implications
4
implications cancer
4
cancer immunotherapy
4
immunotherapy immune
4
immune function
4
function relies
4
relies appropriate
4
appropriate balance
4

Similar Publications

Oxidative stress, that is, an unbalanced increase in reactive oxygen species (ROS), contributes to tumor-induced immune suppression and limits the efficacy of immunotherapy. Cancer cells have inherently increased ROS production, intracellularly through metabolic perturbations and extracellularly through activation of NADPH oxidases, which promotes cancer progression. Further increased ROS production or impaired antioxidant systems, induced, for example, by chemotherapy or radiotherapy, can preferentially kill cancer cells over healthy cells.

View Article and Find Full Text PDF

Background: Myeloid Derived Suppressor Cells (MDSCs) are capable of inhibiting both innate and adaptive immune responses and accumulate in the microenvironment of breast tumors. Hence, MDSC depletion by chemotherapeutic agents can improve clinical efficacy of cancer immunotherapy. The effects of 5-FU and doxorubicin agents on MDSC reduction in 4T1 breast cancer murine model were evaluated.

View Article and Find Full Text PDF

Solid tumours induce systemic immunosuppression that involves myeloid and T cells. B cell-related mechanisms remain relatively understudied. Here we discover two distinct patterns of tumour-induced B cell abnormality (TiBA; TiBA-1 and TiBA-2), both associated with abnormal myelopoiesis in the bone marrow.

View Article and Find Full Text PDF

The complex relationship between natural killer (NK) cells and dendritic cells (DCs) within the tumor microenvironment significantly impacts the success of cancer immunotherapy. Recent advancements in cancer treatment have sought to bolster innate and adaptive immune responses through diverse modalities, aiming to tilt the immune equilibrium toward tumor elimination. Optimal antitumor immunity entails a multifaceted interplay involving NK cells, T cells and DCs, orchestrating immune effector functions.

View Article and Find Full Text PDF

The establishment and progression of bone metastatic breast cancer is supported by immunosuppressive myeloid populations that enable tumor growth by dampening the innate and adaptive immune response. Much work remains to understand how to target these tumor-myeloid interactions to improve treatment outcomes. Noncanonical Hedgehog signaling is an essential component of bone metastatic tumor progression, and prior literature suggests a potential role for Hedgehog signaling and its downstream effector Gli2 in modulating immune responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!