The scarcity of viable hepatocytes is a significant bottleneck in cell transplantation, drug discovery, toxicology, tissue engineering, and bioartificial assist devices, where trillions of high-functioning hepatocytes are needed annually. We took the novel approach of using machine perfusion to maximize cell recovery, specifically from uncontrolled cardiac death donors, the largest source of disqualified donor organs. In a rat model, we developed a simple 3 hour room temperature (20±2°C) machine perfusion protocol to treat non-premedicated livers exposed to 1 hour of warm (34°C) ischemia. Treated ischemic livers were compared to fresh, fresh-treated and untreated ischemic livers using viable hepatocyte yields and performance as quantitative endpoints. Perfusion treatment resulted in both a 25-fold increase in viable hepatocytes from ischemic livers, and a 40% increase from fresh livers. While cell morphology and function in suspension and plate cultures of untreated warm ischemic cells was significantly impaired, treated warm ischemic cells were indistinguishable from fresh hepatocytes. Further, a strong linear correlation between tissue ATP and cell yield enabled accurate evaluation of the extent of perfusion recovery. Maximal recovery of warm ischemic liver ATP content appears to be correlated with optimal flow through the microvasculature. These data demonstrate that the inclusion of a simple perfusion-preconditioning step can significantly increase the efficiency of functional hepatocyte yields and the number of donor livers that can be gainfully utilized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243527PMC
http://dx.doi.org/10.3727/215517912X658927DOI Listing

Publication Analysis

Top Keywords

machine perfusion
12
hepatocyte yields
12
ischemic livers
12
warm ischemic
12
viable hepatocytes
8
ischemic cells
8
ischemic
7
livers
7
perfusion
5
simple machine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!