Quantum chemical investigations of AlN-doped C60 for use as a nano-biosensor in detection of mispairing between DNA bases.

J Biosci

Promising Centre for Sensors and Electronic Devices, College of Arts and Science, Najran University, Najran, KSA.

Published: December 2014

Quantum chemical calculations were carried out to study the electronic structure and stability of adenine-thymine and the rare tautomer of adenine-thymine base pairs along with their Cu 2+ complexes and their interactions with AlN-modified fullerene (C58AlN) using Density Functional Theory (B3LYP method). Since, these two forms of base pairs and their Cu 2+ complexes have almost similar electronic structures, their chemical differentiation is an extremely difficult task. In this investigation, we have observed that AlN-doped C 60 could be used as a potentially viable nanoscale sensor to detect these two base pairs as well as their Cu2+ complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12038-014-9475-3DOI Listing

Publication Analysis

Top Keywords

base pairs
12
quantum chemical
8
pairs complexes
8
chemical investigations
4
investigations aln-doped
4
aln-doped c60
4
c60 nano-biosensor
4
nano-biosensor detection
4
detection mispairing
4
mispairing dna
4

Similar Publications

Novel De Novo Intronic Variant of SYNGAP1 Associated With the Neurodevelopmental Disorders.

Mol Genet Genomic Med

February 2025

Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden.

Background: SYNGAP1 encodes a Ras/Rap GTPase-activating protein that is predominantly expressed in the brain with the functional roles in regulating synaptic plasticity, spine morphogenesis, and cognition function. Pathogenic variants in SYNGAP1 have been associated with a spectrum of neurodevelopmental disorders characterized by developmental delays, intellectual disabilities, epilepsy, hypotonia, and the features of autism spectrum disorder. The aim of this study was to identify a novel SYNGAP1 gene variant linked to neurodevelopmental disorders and to evaluate the pathogenicity of the detected variant.

View Article and Find Full Text PDF

ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.

View Article and Find Full Text PDF

Ribose Sugar Alters Conformational Sampling of G•T Mismatched Duplex DNA.

Chem Asian J

January 2025

Indian Institute of Science Education and Research Bhopa;, Chemistry, IISER Bhopal, Chemistry, #229,, Academic Building #2, Bhopal bypass road, Bhauri, 462066, Bhopal, INDIA.

Polymerases erroneously incorporate Guanine-Thymine (dG•dT) mismatches in genomic DNA that further evades repair by transient sampling of tautomeric/ionic states compromising fidelity of repairing dG•dT mismatches. In conjunction, significant frequency of ribose (mis)incorporation in duplex DNA permits for misincorporated-mismatch in the genome. Ribose incorporated G(rG) mismatched with T(rG•dT) is the most stable across all misincorporated-mismatch calling into question the conformational consequences of the ribose sugar in addition to the mismatch.

View Article and Find Full Text PDF

Purpose: This work described a new species of Ceratomyxa, based on morphological and phylogenetic analyzes of myxospores collected from the gallbladder of the fish Astyanax mexicanus.

Methods: Sixty-two specimens were captured, between December 2022 and February 2024, in the Flexal River, in the community of Tessalônica, state of Amapá. The specimens were transported alive to the Laboratory of Morphophysiology and Animal Health, at the State University of Amapá, where the studies were carried out.

View Article and Find Full Text PDF

CellREADR: An ADAR-based RNA sensor-actuator device.

Methods Enzymol

January 2025

Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States. Electronic address:

RNAs are central mediators of genetic information flow and gene regulation that underlie diverse cell types and cell states across species. Thus, methods that can sense and respond to RNA profiles in living cells will have broad applications in biology and medicine. CellREADR - Cell access through RNA sensing by Endogenous ADAR (adenosine deaminase acting on RNA), is a programmable RNA sensor-actuator technology that couples the detection of a cell-defining RNA to the translation of an effector protein to monitor and manipulate the cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!