The extension of the study of the conformational space of the structure of (+)-catechin at the B3LYP/6-31G(d,p) level of theory is presented in this paper. (+)-Catechin belongs to the family of the flavan-3-ols, which is one of the five largest phenolic groups widely distributed in nature, and whose biological activity and pharmaceutical utility are related to the antioxidant activity due to their ability to scavenge free radicals. The effects of free rotation around all C-O bonds of the OH substituents at different rings are taken into account, obtaining as the most stable conformer, one that had not been previously reported. One hundred seven structures, and a study of the effects of charge delocalization and stereoelectronic effects at the B3LYP/6-311++G(d,p) level are reported by natural bond orbital analysis, streamlining the order of these structures. For further analysis of the structural and molecular properties of this compound in a biological environment, the calculation of polarizabilities, and the study of the electric dipole moment are performed considering the whole conformational space described. The results are analyzed in terms of accumulated knowledge for (4α → 6″, 2α → O → 1″)-phenylflavans and (+)-catechin in previous works, enriching the study of both types of structures, and taking into account the importance of considering the whole conformational space in modeling both the polarizability and the electric dipole moment, also proposing to define a descriptive subspace of only 16 conformers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-014-2522-z | DOI Listing |
Polymers (Basel)
January 2025
Rheology Department, Polymat Institute, University of the Basque Country, 20018 Donostia-San Sebastian, Euskadi, Spain.
This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing, University, Chongqing, 400044, People's Republic of China.
Selecting channels for motor imagery (MI)-based brain-computer interface (BCI) systems can not only enhance the portability of the systems, but also improve the decoding performance. Hence, we propose a cross-domain-based channel selection (CDCS) approach, which effectively minimizes the number of EEG channels used while maintaining high accuracy in MI recognition. The EEG source imaging (ESI) technique is employed to map scalp EEG into the cortical source domain.
View Article and Find Full Text PDFSci Rep
January 2025
DIMES Department, University of Calabria, Rende, 87036, Italy.
Despite their widespread adoption, particle-scale simulation methods, such as the Discrete Element Method (DEM), for electrically charged particles in several natural processes and industrial transformations do not include realistic polarization effects. At close distances, these can dominate the particle motion and are impossible to predict by the commonly adopted Coulomb point-charge approximation. Sophisticated mathematical tools can account for uneven charge distributions, predicting an attractive force between a charged particle and a neutral particle or possible attraction between two like-charged particles.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
National Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 China. Electronic address:
Poly (ethylene oxide) (PEO)-based polymer electrolytes have promising applications in all-solid-state lithium metal batteries. However, their wide range of practical applications is severely limited by their relatively low room temperature lithium ion conductivity and narrow electrochemical window. In this paper, based on the ability of spontaneous polarization of ferroelectric materials to generate polarization field under applied electric field and the characteristics of Metal-Organic-Frameworks (MOFs) materials with regular adjustable pore structure, a Nano material combining ferroelectric materials and MOF (NUS-6(Hf)-MOF) was first proposed to be added to PEO polymer electrolyte as a filler.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Guangzhou University, Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006 P, 510006, Guangzhou, CHINA.
The optimization of morphology in all-polymer solar cells (all-PSCs) often relies on the use of solvent additives. However, their tendency to remain trapped in the device due to high boiling points leads to performance degradation over time. In this study, we introduce a novel approach involving the design and synthesis of one dual-asymmetric solid additive featuring mono-brominated-asymmetric dithienothiophene (SL-1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!