Glioblastoma is a grade IV astrocytoma that is widely accepted in clinical neurosurgery as being an extremely lethal diagnosis. Long-term survival rates remain dismal, and even when tumors undergo gross resection with confirmation of total removal on neuroimaging, they invariably recur with even greater virulence. Standard therapeutic modalities as well as more contemporary treatments have largely resulted in disappointing improvements. However, the therapeutic potential of vaccine immunotherapy for malignant glioma should not be underestimated. In contrast to many of the available treatments, vaccine immunotherapy is unique because it offers the means of delivering treatment that is highly specific to both the patient and the tumor. Peptide, heat-shock proteins, and dendritic cell vaccines collectively encapsulate the majority of research efforts involving vaccine-based treatment modalities. In this review, important recent findings for these vaccine types are discussed in the context of ongoing clinical trials. Broad challenges to immunotherapy are also considered.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642892 | PMC |
http://dx.doi.org/10.1007/s11910-014-0508-y | DOI Listing |
Childs Nerv Syst
December 2024
Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
Purpose: We aimed to present our surgical experience and the impact of a solid or cystic morphology of cerebellar pilocytic astrocytoma (cPA) on surgery and the risk for a re-resection.
Methods: We retrospectively analyzed all children operated at our institution between 2009 and 2023 for cPA. Tumours were categorized into 4 groups: (i) cystic PA without cyst wall enhancement, (ii) cystic PA with cyst wall enhancement, (iii) solid tumour, (iv) and solid tumour with central necrosis.
World Neurosurg
December 2024
Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China.
Background: The presence of isocitrate dehydrogenase (IDH) mutations and 1p/19q codeletion significantly influences the diagnosis and prognosis of patients with lower-grade gliomas (LGGs). The ability to predict these molecular signatures preoperatively can inform surgical strategies. This study sought to establish an interpretable imaging feature set for predicting molecular signatures and overall survival in LGGs.
View Article and Find Full Text PDFEur J Pharmacol
December 2024
The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China. Electronic address:
Glioblastoma multiforme (GBM) is a highly heterogeneous and aggressive brain tumor, which presents significant challenges for treatment in clinical settings. Phosphodiesterase 4 (PDE4) inhibitors can prevent the degradation of cAMP and have been used as a potential targeted therapeutic approach for different cancer types. However, its clinical use is restricted by the side effects such as nausea and vomiting.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA. Electronic address:
Phosphatase and Tensin Homologue (PTEN) is one of the most frequently lost tumor suppressors in cancer and the predominant negative regulator of the PI3K/AKT signaling axis. A growing body of evidence has highlighted the loss of PTEN with immuno-modulatory functions including the upregulation of the programmed death ligand-1 (PD-L1), an altered tumor derived secretome that drives an immunosuppressive tumor immune microenvironment (TIME), and resistance to certain immunotherapies. Given their roles in immunosuppression and tumor growth, we examined whether the loss of PTEN would impact the biogenesis, cargo, and function of extracellular vesicles (EVs) in the context of the anti-tumor associated cytokine interferon-γ (IFN-γ).
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
Exosomes, minute vesicles originating from diverse cell types, exhibit considerable potential as carriers for drug delivery in glioma therapy. These naturally occurring nanocarriers facilitate the transfer of proteins, RNAs, and lipids between cells, offering advantages such as biocompatibility, efficient cellular absorption, and the capability to traverse the blood-brain barrier (BBB). In the realm of cancer, particularly gliomas, exosomes play pivotal roles in modulating tumor growth, regulating immunity, and combating drug resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!