During central nervous system (CNS ) development, a large number of neurons die by apoptosis and are efficiently removed through phagocytosis. Since apoptosis and apoptotic cell clearance are highly conserved in evolution, relatively simple and easily accessible Drosophila embryonic CNS provides a good model to study molecular and cellular mechanisms of these processes. Here, we describe how to assess neuronal apoptosis and glial phagocytosis of apoptotic neurons using immunohistochemistry of whole fixed embryos and live imaging of developing embryonic CNS. Combination of these different strategies allows a comprehensive analysis of neuronal cell death in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-2152-2_26 | DOI Listing |
Exp Mol Med
January 2025
National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Republic of Korea.
Diabetes is an incurable, chronic disease that can lead to many complications, including angiopathy, peripheral neuropathy, and erectile dysfunction (ED). The angiopoietin-Tie2 signaling pathway plays a critical role in blood vessel development, formation, remodeling, and peripheral nerve regeneration. Therefore, strategies for activating the Tie2 signaling pathway have been developed as potential therapies for neurovascular diseases.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Milano, 20134, Italy.
We introduce a family of membrane-targeted azobenzenes (MTs) with a push-pull character as a new tool for cell stimulation. These molecules are water soluble and spontaneously partition in the cell membrane. Upon light irradiation, they isomerize from trans to cis, changing the local charge distribution and thus stimulating the cell response.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, 200032, China.
Focal cortical dysplasia (FCD) is a highly heterogeneous neurodevelopmental malformation, the underlying mechanisms of which remain largely elusive. In this study, personalized dorsal and ventral forebrain organoids (DFOs/VFOs) are generated derived from brain astrocytes of patients with FCD type II (FCD II). The pathological features of dysmorphic neurons, balloon cells, and astrogliosis are successfully replicated in patient-derived DFOs, but not in VFOs.
View Article and Find Full Text PDFJ Neurosci
December 2024
Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis IN, USA
Anti-Aβ immunotherapy use to treat Alzheimer's disease is on the rise. While anti-Aβ antibodies provide hope in targeting Aβ plaques in the brain there still remains a lack of understanding regarding the cellular responses to these antibodies in the brain. In this study we sought to identify acute effects of anti-Aβ antibody on immune responses.
View Article and Find Full Text PDFJ Neurosci
December 2024
Neurobiology Laboratory, National Institute of Environmental Health Sciences, Division of Intramural Research, National Institute of Health, Research Triangle Park, North Carolina 27713, USA
Perineuronal nets (PNNs) are a specialized extracellular matrix that surround certain populations of neurons, including (inhibitory) parvalbumin (PV) expressing-interneurons throughout the brain and (excitatory) CA2 pyramidal neurons in hippocampus. PNNs are thought to regulate synaptic plasticity by stabilizing synapses and as such, could regulate learning and memory. Most often, PNN functions are queried using enzymatic degradation with chondroitinase, but that approach does not differentiate PNNs on CA2 neurons from those on adjacent PV cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!