The lateral movement of soil carbon has a profound effect on the carbon budget of terrestrial ecosystems; however, it has never been quantified in China, which is one of the strongest soil erosion areas in the world. In this study, we estimated that the overall soil erosion in China varies from 11.27 to 18.17 Pg yr(-1) from 1982 to 2011, accounting for 7-21% of total soil erosion globally. Soil erosion induces a substantial lateral redistribution of soil organic carbon ranging from 0.64 to 1.04 Pg C yr(-1). The erosion-induced carbon flux ranges from a 0.19 Pg C yr(-1) carbon source to a 0.24 Pg C yr(-1) carbon sink in the terrestrial ecosystem, which is potentially comparable in magnitude to previously estimated total carbon budget of China (0.19 to 0.26 Pg yr(-1)). Our results showed that the lateral movement of soil carbon strongly alters the carbon budget in China, and highlighted the urgent need to integrate the processes of soil erosion into the regional or global carbon cycle estimates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246205PMC
http://dx.doi.org/10.1038/srep07247DOI Listing

Publication Analysis

Top Keywords

soil erosion
20
carbon budget
16
carbon
12
soil carbon
12
lateral movement
12
budget china
12
soil
8
movement soil
8
yr-1 carbon
8
china
5

Similar Publications

A former uranium recovery facility located in northwestern New Mexico currently serves as a uranium mill tailings site undergoing reclamation and decommissioning. High velocity winds are common in the area, causing soil erosion via aeolian processes. Strong winds may carry soil for several kilometers, which is redeposited downwind.

View Article and Find Full Text PDF

Wetlands in the Qinghai-Tibet Plateau are a unique and fragile ecosystem undergoing rapid changes. We show two unique patterns of mercury (Hg) accumulation in wetland sediments. One is the 'surface peak' in monsoon-controlled regions and the other is the 'subsurface peak' in westerly-controlled regions.

View Article and Find Full Text PDF

Extreme precipitation is a crucial trigger for soil erosion events in karst regions. However, the existence of a scale effect in suspended sediment characteristics of karst basins and which extreme precipitation variables control this effect remain unclear. To investigate this, we analyzed the scale effect on suspended sediment characteristics using monthly hydrological data from five karst basins of varying scales, consistently monitored from 2012 to 2019.

View Article and Find Full Text PDF

Soil erodibility properties experimental quantification: a meta-analysis.

Environ Sci Pollut Res Int

January 2025

Laboratory LMGCE, Ecole Nationale Polytechnique, 10 Rue Frères OUDEK 16200 El-Harrach, Algiers, Algeria.

The focus in the present study is on the quantification soil erodibility properties (representing an erosion threshold (such as the critical shear stress) and a resistance property (e.g., the soil erosion coefficient)).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how well a gut bacteria strain, Bacillus cereus AP-01, can break down low-density polyethylene (LDPE), using experiments over 28 days to measure its effectiveness.
  • The researchers employed various methods like FTIR and SEM to analyze changes in LDPE structure and confirmed the bacterial strain through molecular characterization.
  • Results showed that the bacteria significantly degraded LDPE, with a 30.3% weight loss and changes in mechanical properties, highlighting its potential as a solution for plastic pollution.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!