Density functional theory calculations suggest that β-turn peptide segments can act as a novel dual-relay elements to facilitate long-range charge hopping transport in proteins, with the N terminus relaying electron hopping transfer and the C terminus relaying hole hopping migration. The electron- or hole-binding ability of such a β-turn is subject to the conformations of oligopeptides and lengths of its linking strands. On the one hand, strand extension at the C-terminal end of a β-turn considerably enhances the electron-binding of the β-turn N terminus, due to its unique electropositivity in the macro-dipole, but does not enhance hole-forming of the β-turn C terminus because of competition from other sites within the β-strand. On the other hand, strand extension at the N terminal end of the β-turn greatly enhances hole-binding of the β-turn C terminus, due to its distinct electronegativity in the macro-dipole, but does not considerably enhance electron-binding ability of the N terminus because of the shared responsibility of other sites in the β-strand. Thus, in the β-hairpin structures, electron- or hole-binding abilities of both termini of the β-turn motif degenerate compared with those of the two hook structures, due to the decreased macro-dipole polarity caused by the extending the two terminal strands. In general, the high polarity of a macro-dipole always plays a principal role in determining charge-relay properties through modifying the components and energies of the highest occupied and lowest unoccupied molecular orbitals of the β-turn motif, whereas local dipoles with low polarity only play a cooperative assisting role. Further exploration is needed to identify other factors that influence relay properties in these protein motifs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201402657 | DOI Listing |
Microbiol Spectr
January 2025
Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China.
(Mp), a unique pathogen devoid of a cell wall, is naturally impervious to penicillin antibiotics. This bacterium is the causative agent of pneumonia, an acute pulmonary affliction marked by interstitial lung damage. Non-macrolide medications may have potential adverse effects on the developmental trajectory of children, thereby establishing macrolides as the preferred treatment for in pediatric patients.
View Article and Find Full Text PDFBiol Methods Protoc
January 2025
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia.
Alzheimer's disease (AD) is a multifactorial systemic disease that is triggered, at least in part, by the accumulation of β-amyloid (Aβ) peptides in the brain, but it also depends on immune system-mediated regulation. Recent studies suggest that B cells may play a role in AD development and point to the accumulation of clonally expanded B cells in AD patients. However, the specificity of the clonally expanded B cells is unknown, and the contribution of Aβ-specific B cells to AD pathology development is unclear.
View Article and Find Full Text PDFRSC Med Chem
December 2024
Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel Brussels Belgium
A peptide segment that is 10 residues long at the C-terminal (CT) region of Cx43 is known to be involved in interactions, both with the Cx43 protein itself and with other proteins, that result in hemichannel (HC) activity regulation. Previously reported mimetic peptides based on this region (, , ) have been revealed to be promising therapeutic agents in the context of cardiovascular diseases. In this work, novel approaches, such as C- and N-terminal modification and cyclization, to improve the proteolytic stability and bioavailability of the peptide are presented.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Analytical Characterization, Biologics Analytical Development, Technical Research & Development, Novartis Pharma AG, WKL693.3.20, Postfach, CH-4002 Basel, Switzerland.
Isomerization of aspartic acid residues is a relevant degradation pathway of protein biopharmaceuticals as it can impair their biological activity. However, the in silico prediction of isomerization hotspots and their consequences remains ambiguous and misleading. We have previously shown that all ion differential analysis (AiDA) of middle-down spectra can be used to reveal diagnostic terminal and internal fragments with more sensitivity than the conventional fragment ion mass matching methodology.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000 PR China. Electronic address:
Rapid, sensitive, and accurate detection of heavy metal ions is significant for human health and ecological security. Herein, a novel single-stranded DNA with poly(thymidine) tail is tactfully designed as template to synthesize dual-emission silver nanoclusters (ssDNA-AgNCs). The obtained AgNCs simultaneously emit red and green fluorescence, and the red emission can be selectively quenched by Hg, meanwhile the green emission of AgNCs increases synchronously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!