We use multiple-tip Langmuir probes and fast imaging to unambiguously identify and study the dynamics of underlying instabilities during the controlled route to fully-developed plasma turbulence in a linear magnetized helicon plasma device. Langmuir probes measure radial profiles of electron temperature, plasma density and potential; from which we compute linear growth rates of instabilities, cross-phase between density and potential fluctuations, Reynold's stress, particle flux, vorticity, time-delay estimated velocity, etc. Fast imaging complements the 1D probe measurements by providing temporally and spatially resolved 2D details of plasma structures associated with the instabilities. We find that three radially separated plasma instabilities exist simultaneously. Density gradient driven resistive drift waves propagating in the electron diamagnetic drift direction separate the plasma into an edge region dominated by strong, velocity shear driven Kelvin-Helmholtz instabilities and a central core region which shows coherent Rayleigh-Taylor modes propagating in the ion diamagnetic drift direction. The simultaneous, complementary use of both probes and camera was crucial to identify the instabilities and understand the details of the very rich plasma dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4890250DOI Listing

Publication Analysis

Top Keywords

unambiguously identify
8
identify study
8
study dynamics
8
underlying instabilities
8
plasma
8
plasma turbulence
8
langmuir probes
8
fast imaging
8
density potential
8
diamagnetic drift
8

Similar Publications

Structural features of dioxane lignin: A comparative study with milled wood and formaldehyde-stabilized lignins.

Int J Biol Macromol

January 2025

Core Facility Center "Arktika", Northern (Arctic) Federal University named after M.V. Lomonosov, Northern Dvina Emb., 17, Arkhangelsk 163002, Russian Federation. Electronic address:

Dioxane lignin (DL) is isolated from plant material under mild acidolysis conditions and is widely used in many studies as a representative sample of protolignin, an alternative to milled wood lignin (MWL). However, the structural changes caused by hydrolytic degradation reactions during DL extraction are still poorly understood. In this work, an integrated approach based on 2D NMR and high-resolution mass spectrometry was used to establish the features of the lignin structure on the example of pine lignin isolated using dioxane under various conditions: MWL, DL and "formaldehyde stabilized" lignin (LSF).

View Article and Find Full Text PDF

Codling moth is well established nearly everywhere apples are grown. Due to this almost global distribution, larvae are often intercepted at U.S.

View Article and Find Full Text PDF

In this study, we report the first example of acyclic (amino)(N-pyridinium)carbenoid gold(III) complexes synthesized via a coupling reaction between 2-pyridylselenyl chloride and Au(I)-bound isonitriles. The reaction involves an initial oxidative addition of the Se-Cl moiety to Au(I), followed by the nucleophilic addition of the pyridine fragment to the isonitrile's C≡N bond, furnishing a metallacycle. Importantly, this is the first example of the pyridine acting as a nucleophile towards metal-bound isonitriles.

View Article and Find Full Text PDF

A cost-effective oligo-based barcode system for chromosome identification in longan and lychee.

Hortic Res

January 2025

Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Mazhang District, Zhanjiang 524091, China.

Oligonucleotide (Oligo)-based fluorescence hybridization (FISH) represents a highly effective methodology for identifying plant chromosomes. Longan is a commercially significant fruit species, yet lacking basic chromosomal markers has hindered its cytogenetic research. In this study, we developed a cost-effective oligo-based system for distinguishing chromosomes of longan ( Lour.

View Article and Find Full Text PDF

Evaluation of TOCSY mixing for sensitivity-enhancement in solid-state NMR and application of 4D experiments for side-chain assignments of the full-length 30 kDa membrane protein GlpG.

J Biomol NMR

January 2025

Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert- Rössle-Straße 10, 13125, Berlin, Germany.

Chemical shift assignments of large membrane proteins by solid-state NMR experiments are challenging. Recent advancements in sensitivity-enhanced pulse sequences, have made it feasible to acquire H-detected 4D spectra of these challenging protein samples within reasonable timeframes. However, obtaining unambiguous assignments remains difficult without access to side-chain chemical shifts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!