The fuel ion ratio nt/nd is an essential parameter for plasma control in fusion reactor relevant applications, since maximum fusion power is attained when equal amounts of tritium (T) and deuterium (D) are present in the plasma, i.e., nt/nd = 1.0. For neutral beam heated plasmas, this parameter can be measured using a single neutron spectrometer, as has been shown for tritium concentrations up to 90%, using data obtained with the MPR (Magnetic Proton Recoil) spectrometer during a DT experimental campaign at the Joint European Torus in 1997. In this paper, we evaluate the demands that a DT spectrometer has to fulfill to be able to determine nt/nd with a relative error below 20%, as is required for such measurements at ITER. The assessment shows that a back-scattering time-of-flight design is a promising concept for spectroscopy of 14 MeV DT emission neutrons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4890577 | DOI Listing |
Polymers (Basel)
December 2024
School of Civil Engineering and Architecture, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
Anion exchange membranes (AEMs) as a kind of important functional material are widely used in fuel cells. However, synthetic AEMs generally suffer from low conductivity, poor alkaline stability, and poor dimensional stability. Constructing efficient ion transport channels is widely regarded as one of the most effective strategies for developing AEMs with high conductivity and low swelling ratio.
View Article and Find Full Text PDFSmall
January 2025
School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
Inorg Chem
January 2025
School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, P. R. China.
Although there has been some recent interest in the proton conductivity (σ) of highly stable carboxyl metal-organic frameworks (MOFs) made of tetravalent metal ions, given their potential applications in fuel cells and electrochemical sensing, research on MOFs constructed by hafnium(IV) ions needs to be expanded significantly. Based on this, we used two common and easily prepared phenylpoly(carboxylic acid) ligands, 1,2,4-phenyltricarboxylic acid and 1,2,4,5-phenyltetracarboxylic acid, to react with hafnium tetrachloride, respectively, creating two porous hafnium(IV)-based MOFs, () and UiO-66-(COOH)-Hf (), with the same structure as UiO-66-Hf but with different numbers of free carboxylic groups. A series of stability assays revealed that the two MOFs had excellent structural rigidity, including thermal and water stability.
View Article and Find Full Text PDFInorg Chem
January 2025
Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, 2-12-1 N1-32, O-okayama, Meguro-ku, Tokyo 152-8550, Japan.
Small
January 2025
School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
Intrinsic low conductivity, poor structural stability, and narrow interlayer spacing limit the development of MnO in sodium-ion (Na) supercapacitors. This work constructs the hollow cubic Mn-PBA precursor through an ion-exchange process to in situ obtain a hollow cubic H-Ni-MnO composite with Ni doping and oxygen vacancies (O) via a self-oxidation strategy. Experiments and theoretical calculations show that the hollow nanostructure and the expanding interlayer spacing induced by Ni doping are beneficial for exposing more reactive sites, synergistically manipulating the Na transport pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!