The electronic structure of vanadium monochloride cation (VCl(+)): tackling the complexities of transition metal species.

J Chem Phys

Department of Chemistry, Department of Astronomy, Arizona Radio Observatory, and Steward Observatory, University of Arizona, Tucson, Arizona 85721, USA.

Published: November 2014

Six electronic states (X (4)Σ(-), A (4)Π, B (4)Δ, (2)Φ, (2)Δ, (2)Σ(+)) of the vanadium monochloride cation (VCl(+)) are described using large basis set coupled cluster theory. For the two lowest quartet states (X (4)Σ(-) and A (4)Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T0) and spectroscopic constants (re, r0, Be, B0, D¯e, He, ωe, v0, αe, ωexe) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X (4)Σ(-)), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state ((2)Γ) has a Te of ∼11 200 cm(-1). Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4901239DOI Listing

Publication Analysis

Top Keywords

coupled cluster
12
cluster theory
12
vanadium monochloride
8
monochloride cation
8
cation vcl+
8
states 4Σ-
8
4Σ- 4Π
8
basis set
8
theory
5
electronic
4

Similar Publications

In recent years, DNA metabarcoding has been used for a more efficient assessment of bulk samples. However, there remains a paucity of studies examining potential disparities in species identification methodologies. Here, we explore the outcomes of diverse clustering and filtering techniques on data from a non-destructive metabarcoding approach, compared to species-level morphological identification of Brachycera (Diptera) and Hymenoptera of two bulk samples collected with Malaise traps.

View Article and Find Full Text PDF

Quantum computing presents a promising avenue for solving complex problems, particularly in quantum chemistry, where it could accelerate the computation of molecular properties and excited states. This work focuses on computing excitation energies with hybrid quantum-classical algorithms for near-term quantum devices, combining the quantum linear response (qLR) method with a polarizable embedding (PE) environment. We employ the self-consistent operator manifold of quantum linear response (q-sc-LR) on top of a unitary coupled cluster (UCC) wave function in combination with a Davidson solver.

View Article and Find Full Text PDF

The Best of Both Worlds: ΔDFT Describes Multiresonance TADF Emitters with Wave-Function Accuracy at Density-Functional Cost.

J Phys Chem Lett

January 2025

Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany.

With their narrow-band emission, high quantum yield, and good chemical stability, multiresonance thermally activated delayed fluorescence (MR-TADF) emitters are promising materials for OLED technology. However, accurately modeling key properties, such as the singlet-triplet (ST) energy gap and fluorescence energy, remains challenging. While time-dependent density functional theory (TD-DFT), the workhorse of computational materials science, suffers from fundamental issues, wave function-based coupled-cluster (CC) approaches, like approximate CC of second-order (CC2), are accurate but suffer from high computational cost and unfavorable scaling with system size.

View Article and Find Full Text PDF

Background: Recent years have seen persistently poor prognoses for glioma patients. Therefore, exploring the molecular subtyping of gliomas, identifying novel prognostic biomarkers, and understanding the characteristics of their immune microenvironments are crucial for improving treatment strategies and patient outcomes.

Methods: We integrated glioma datasets from multiple sources, employing Non-negative Matrix Factorization (NMF) to cluster samples and filter for differentially expressed metabolic genes.

View Article and Find Full Text PDF

Traumatic brain injury is widely viewed as a risk factor for dementia, but the biological mechanisms underlying this association are still unclear. In previous studies, traumatic brain injury has been associated with the hallmark pathologies of Alzheimer's disease, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!