This work presents an intermediate resolution model of the hydrodynamics of colloidal particles based on a mixed Eulerian-Lagrangian formulation. The particle is constructed with a small set of overlapping Peskin's Immersed Boundary kernels (blobs) which are held together by springs to build up a particle impenetrable core. Here, we used 12 blobs placed in the vertexes of an icosahedron with an extra one in its center. Although the particle surface is not explicitly resolved, we show that the short-distance hydrodynamic responses (flow profiles, translational and rotational mobilities) agree with spherical colloids and provide consistent effective radii. A remarkable property of the present multiblob model is that it naturally provides zero relative mobility at some finite inter-particle distance. In terms of mutual friction, this divergent force accurately represents the "soft" lubrication regime of spherical colloids and permits to resolve the increase of the solution viscosity up to moderately dense systems with volume fraction up to about 0.50. This intermediate resolution model is able to recover highly non-trivial (many-body) hydrodynamics using small particles whose radii are similar to the grid size h (in the range [1.6 - 3.2] h). Considering that the cost of the embedding fluid phase scales such as the cube of the particle radius, this result brings about a significant computational speed-up. Our code Fluam works in Graphics Processor Units and uses Fast Fourier Transform for the Poisson solver, which further improves its efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4901889 | DOI Listing |
Adv Mater
December 2024
Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
Developing sufficiently effective non-precious metal catalysts for large-current-density hydrogen production is highly significant but challenging, especially in low-voltage hydrogen production systems. Here, we innovatively report high-entropy alloy nanoflower array (HEANFA) electrodes with optimizable reaction pathways for hydrazine oxidation-assisted hydrogen production at industrial-grade current densities. Atomic-resolution structural analyses confirm the single-phase solid-solution structure of HEANFA.
View Article and Find Full Text PDFNeural Netw
December 2024
College of Electronic and Information Engineering, Tongji University, China; Shanghai Institute of Intelligent Science and Technology, Tongji University, China. Electronic address:
The target of space-time video super-resolution (STVSR) is to increase both the frame rate (also referred to as the temporal resolution) and the spatial resolution of a given video. Recent approaches solve STVSR using end-to-end deep neural networks. A popular solution is to first increase the frame rate of the video; then perform feature refinement among different frame features; and at last, increase the spatial resolutions of these features.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan.
To tackle disorder in crystals and short- and intermediate-range order in amorphous materials, such as glass, we developed a carry-in diffractometer to utilise X-ray fluorescence holography (XFH) and anomalous X-ray scattering (AXS), facilitating element-specific analyses with atomic resolution using the wavelength tunability of a synchrotron X-ray source. Our diffractometer unifies XFH and AXS configurations to determine the crystal orientation via diffractometry. In particular, XFH was realised even for a crystal with blurred emission lines by a standing wave in a hologram, and high-throughput AXS with sufficient count statistics and energy resolution was achieved using three multi-array detectors with crystal analysers.
View Article and Find Full Text PDFBiochemistry
December 2024
Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, California 92697, United States.
Arrestins halt signal transduction by binding to the phosphorylated C-termini of activated G protein-coupled receptors. Arrestin-1, the first subtype discovered, binds to rhodopsin in rod cells. Mutations in , the gene encoding Arrestin-1, are linked to Oguchi disease, characterized by delayed dark adaptation.
View Article and Find Full Text PDFCommun Chem
December 2024
Department of Chemistry, University of Zurich, Zurich, Switzerland.
Chirality plays a critical role in the biochemistry of life and often only one enantiomeric series is observed (homochirality). Only a few natural products have been obtained as racemates, e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!