A protocol for the use of computational fluid dynamics as a supportive tool for wastewater treatment plant modelling.

Water Sci Technol

Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS, Université de Lorraine, 1 rue Grandville, 54001 Nancy, France.

Published: May 2015

To date, computational fluid dynamics (CFD) models have been primarily used for evaluation of hydraulic problems at wastewater treatment plants (WWTPs). A potentially more powerful use, however, is to simulate integrated physical, chemical and/or biological processes involved in WWTP unit processes on a spatial scale and to use the gathered knowledge to accelerate improvement in plant models for everyday use, that is, design and optimized operation. Evolving improvements in computer speed and memory and improved software for implementing CFD, as well as for integrated processes, has allowed for broader usage of this tool for understanding, troubleshooting, and optimal design of WWTP unit processes. This paper proposes a protocol for an alternative use of CFD in process modelling, as a way to gain insight into complex systems leading to improved modelling approaches used in combination with the IWA activated sludge models and other kinetic models.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2014.425DOI Listing

Publication Analysis

Top Keywords

computational fluid
8
fluid dynamics
8
wastewater treatment
8
wwtp unit
8
unit processes
8
protocol computational
4
dynamics supportive
4
supportive tool
4
tool wastewater
4
treatment plant
4

Similar Publications

As humans age, they experience deformity and a decrease in their bone strength, such brittleness in the bones ultimately lead to bone fracture. Magnetic field exposure combined with physical exercise may be useful in mitigating age-related bone loss by improving the canalicular fluid motion within the bone's lacuno-canalicular system (LCS). Nevertheless, an adequate amount of fluid induced shear stress is necessary for the bone mechano-transduction and solute transport in the case of brittle bone diseases.

View Article and Find Full Text PDF

Molecular Dynamics Insights into Cyrene's Vapor-Liquid Equilibria and Transport Properties.

J Phys Chem B

January 2025

Department of Chemical Engineering, University of Bath, Bath Ba2 7ay, United Kingdom.

Since its inception in 2014, Cyrene has emerged as a promising biobased solvent derived from renewable cellulose waste, offering a sustainable alternative to conventional toxic solvents. However, experimental data on its thermodynamic and transport properties remain scarce. This study addresses this critical gap by employing state-of-the-art molecular dynamics simulations.

View Article and Find Full Text PDF

Novel predictive biomarkers for atonic postpartum hemorrhage as explored by proteomics and metabolomics.

BMC Pregnancy Childbirth

January 2025

Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Peking University Third Hospital), National Center for Healthcare Quality Management in Obstetrics, Beijing, 100191, China.

Background: Postpartum hemorrhage (PPH) is the leading cause of maternal mortality worldwide, with uterine atony accounting for approximately 70% of PPH cases. However, there is currently no effective prediction method to promote early management of PPH. In this study, we aimed to screen for potential predictive biomarkers for atonic PPH using combined omics approaches.

View Article and Find Full Text PDF

Monitoring fluid intake and output for congestive heart failure (CHF) patients is an essential tool to prevent fluid overload, a principal cause of hospital admissions. Addressing this, bladder volume measurement systems utilizing bioimpedance and electrical impedance tomography have been proposed, with limited exploration of continuous monitoring within a wearable design. Advancing this format, we developed a conductivity digital twin from radiological data, where we performed exhaustive simulations to optimize electrode sensitivity on an individual basis.

View Article and Find Full Text PDF

It is well-known among swimmers and coaches that the swimming speed of the underwater dolphin kick (UDK) is higher than that of the underwater flutter kick (UFK). This study aimed to clarify the differences in swimming performance between the two kicking styles in terms of kinematics, kinetics and muscle activity. Eight male swimmers performed UDK and UFK in a water flume at same effort levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!