Novel acrylate monomer of quinoline-based chalcone 1-(4-(7-chloroquinolin-4-ylamino)phenyl) acrylate (CPA) was synthesized using (4-(2-chloroquinolin-5-ylamino)phenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one (CPE) and acryloyl chloride. CPA is characterized by different techniques like IR, (1)H NMR and UV-visible spectrometry techniques. Poly(CPA), poly(CPA-co-AA) and poly(CPA-co-HEA) are prepared by solution polymerization technique using CPA, acrylic acid (AA) and hydroxyethylacrylate (HEA), respectively. The antimicrobial activities of the compounds are tested using four different micro-organisms. In vitro cumulative drug release studies are done using UV visible spectroscopic technique. The molecular weights of these polymers are found to be around 5000 g/mol. The synthesized polymers showed two stages of thermal decomposition temperature centred around 220 and 350 °C, respectively. The antimicrobial activity of the polymer sample is found to be very high and especially for gram-negative bacteria with a minimum value of 3.91 μg/mL. The in vitro drug-releasing rate is dependent on the comonomer, pH and temperature of the medium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2014.985022 | DOI Listing |
Anal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address:
Background: The excessive application of enrofloxacin (ENR) results in residues contaminating both food and the environment. Consequently, developing robust analytical methods for the selective detection of ENR is crucial. The photoelectrochemical (PEC) sensor has emerged as a highly sensitive analytical technique that has seen rapid development in recent years.
View Article and Find Full Text PDFMolecules
December 2024
Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland.
Tryptophan (TRP) is an essential amino acid crucial for the production of many bioactive compounds. Disturbances in TRP metabolism have been revealed in various diseases, many of which are closely related to the immune system. In recent years, we have focused on finding blood-based biomarkers of successful immunotherapy in cancer.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.
Molecular hybridization, which consists of the combination of two or more pharmacophores into a single molecule, is an innovative approach in drug design to afford new chemical entities with enhanced biological activity. In the present study, this strategy was pursued to develop a new series of 6,7-dimethoxy-4-piperazinylquinoline-3-carbonitrile derivatives (-) with potential antibiotic activity by combining the quinoline, the piperazinyl, and the benzoylamino moieties, three recurrent frameworks in antimicrobial research. Initial in silico evaluations were conducted on the designed compounds, highlighting favorable ADMET and drug-likeness properties, which were synthesized through a multistep strategy, isolated, and fully characterized.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Pharmacy, Hainan Cancer Hospital, Haikou, Hainan, China.
Background: To identify the factors influencing pyrotinib-induced severe diarrhea and to establish a risk prediction nomogram model.
Methods: The clinical data of 226 patients received pyrotinib from two medical institutions from January 2019 to December 2023 were analysed retrospectively. A training set was made up of 167 patients from Hainan Cancer Hospital, and the external validation set was made up of 59 patients from Hainan West Central Hospital.
Sci Rep
January 2025
Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
Excess consumption of antibiotics leads to antibiotic resistance that hinders the control and cure of microbial diseases. Therefore, it is crucial to monitor the antibiotic levels in the environment. In this proposed research work, an optical nano-sensor was devised that can sense the ultra-low concentration of antibiotics, in samples like tap water using fluorescent zinc oxide quantum dots (ZnO QDs) based nano-sensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!