Substitution of extracellular Ca2+ by Sr2+ prolongs inspiratory burst in pre-Bötzinger complex inspiratory neurons.

J Neurophysiol

Centro de Investigaciones Cerebrales, Dirección General de Investigaciones, Universidad Veracruzana, Xalapa, Veracruz, Mexico; and.

Published: February 2015

The pre-Bötzinger complex (preBötC) underlies inspiratory rhythm generation. As a result of network interactions, preBötC neurons burst synchronously to produce rhythmic premotor inspiratory activity. Each inspiratory burst consists of action potentials (APs) on top of a 10- to 20-mV synchronous depolarization lasting 0.3-0.8 s known as inspiratory drive potential. The mechanisms underlying the initiation and termination of the inspiratory burst are unclear, and the role of Ca(2+) is a matter of intense debate. To investigate the role of extracellular Ca(2+) in inspiratory burst initiation and termination, we substituted extracellular Ca(2+) with Sr(2+). We found for the first time an ionic manipulation that significantly interferes with burst termination. In a rhythmically active slice, we current-clamped preBötC neurons (Vm ≅ -60 mV) while recording integrated hypoglossal nerve (∫XIIn) activity as motor output. Substitution of extracellular Ca(2+) with either 1.5 or 2.5 mM Sr(2+) significantly prolonged the duration of inspiratory bursts from 653.4 ± 30.7 ms in control conditions to 981.6 ± 78.5 ms in 1.5 mM Sr(2+) and 2,048.2 ± 448.5 ms in 2.5 mM Sr(2+), with a concomitant increase in decay time and area. Substitution of extracellular Ca(2+) by Sr(2+) is a well-established method to desynchronize neurotransmitter release. Our findings suggest that the increase in inspiratory burst duration is determined by a presynaptic mechanism involving desynchronization of glutamate release within the network.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00705.2014DOI Listing

Publication Analysis

Top Keywords

extracellular ca2+
20
inspiratory burst
20
ca2+ sr2+
16
substitution extracellular
12
inspiratory
10
pre-bötzinger complex
8
prebötc neurons
8
initiation termination
8
burst
7
ca2+
6

Similar Publications

MYO18B promotes lysosomal exocytosis by facilitating focal adhesion maturation.

J Cell Biol

March 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.

Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.

View Article and Find Full Text PDF

The development of a cytosolic delivery strategy for biopharmaceuticals is one of the central issues in drug development. Knowledge of the mechanisms underlying these processes may also pave the way for the discovery of novel delivery systems. L17E is a an attenuated cationic amphiphilic lytic (ACAL) peptide developed by our research group that shows promise for cytosolic antibody delivery.

View Article and Find Full Text PDF

Lysophosphatidylethanolamine (LPE) is a bioactive lipid mediator involved in diverse cellular functions. In this study, we investigated the effects of three LPE species, 1-palmitoyl LPE (16:0 LPE), 1-stearoyl LPE (18:0 LPE), and 1-oleoyl LPE (18:1 LPE) on pre-osteoblast MC3T3-E1 cells. All LPE species stimulated cell proliferation and activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 1/2.

View Article and Find Full Text PDF

VSMC-specific TRPC1 deletion attenuates angiotensin II-induced hypertension and cardiovascular remodeling.

J Mol Med (Berl)

January 2025

Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China.

Transient receptor potential canonical 1 (TRPC1) channel, a Ca-permeable ion channel widely expressed in vasculature, has been reported to be involved in various cardiovascular disorders. However, the pathophysiological function of vascular smooth muscle cell (VSMC)-derived TRPC1 in hypertension and hypertensive cardiovascular remodeling remains to be defined. In this study, we found increased TRPC1 expression in both angiotensin II (AngII)-treated VSMCs and aortas from AngII-infused mice.

View Article and Find Full Text PDF

[Research progress on the role of calcium ion transport in dental biomineralization].

Zhonghua Kou Qiang Yi Xue Za Zhi

January 2025

Department of Operative Dentistry and Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University & Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai201602, China.

Tooth development is a complex biomineralization process formed through the interaction between epithelial tissue and mesenchymal tissue. The Ca transport channel is the intrinsic regulatory mechanism of this process, which regulates the concentration of Ca inside and outside the cell in time and space, thereby affecting the biological functions of various cells and the growth of extracellular hydroxyapatite. This article reviews the researches on the effects of Ca transport in tooth biomineralization and corresponding cell development in recent years, with the aim of providing ideas and basis for the prevention of tooth developmental defects, assisting in early clinical diagnosis, and improving treatment methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!