A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sensing-enabled hippocampal deep brain stimulation in idiopathic nonhuman primate epilepsy. | LitMetric

Sensing-enabled hippocampal deep brain stimulation in idiopathic nonhuman primate epilepsy.

J Neurophysiol

Brain Modulation Lab, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania

Published: February 2015

Epilepsy is a debilitating condition affecting 1% of the population worldwide. Medications fail to control seizures in at least 30% of patients, and deep brain stimulation (DBS) is a promising alternative treatment. A modified clinical DBS hardware platform was recently described (PC+S) allowing long-term recording of electrical brain activity such that effects of DBS on neural networks can be examined. This study reports the first use of this device to characterize idiopathic epilepsy and assess the effects of stimulation in a nonhuman primate (NHP). Clinical DBS electrodes were implanted in the hippocampus of an epileptic NHP bilaterally, and baseline local field potential (LFP) recordings were collected for seizure characterization with the PC+S. Real-time automatic detection of ictal events was demonstrated and validated by concurrent visual observation of seizure behavior. Seizures consisted of large-amplitude 8- to 25-Hz oscillations originating from the right hemisphere and quickly generalizing, with an average occurrence of 0.71 ± 0.15 seizures/day. Various stimulation parameters resulted in suppression of LFP activity or in seizure induction during stimulation under ketamine anesthesia. Chronic stimulation in the awake animal was studied to evaluate how seizure activity was affected by stimulation configurations that suppressed broadband LFPs in acute experiments. This is the first electrophysiological characterization of epilepsy using a next-generation clinical DBS system that offers the ability to record and analyze neural signals from a chronically implanted stimulating electrode. These results will direct further development of this technology and ultimately provide insight into therapeutic mechanisms of DBS for epilepsy.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00619.2014DOI Listing

Publication Analysis

Top Keywords

clinical dbs
12
deep brain
8
brain stimulation
8
nonhuman primate
8
stimulation
7
dbs
6
epilepsy
5
sensing-enabled hippocampal
4
hippocampal deep
4
stimulation idiopathic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!