Droplet-based microfluidics at the femtolitre scale.

Lab Chip

Microfluidics, MEMS and Nanostructures Laboratory (MMN), CNRS UMR 7083, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI ParisTech), 10, rue Vauquelin, 75231 Paris Cedex 05, France.

Published: February 2015

We have built a toolbox of modules for droplet-based microfluidic operations on femtolitre volume droplets. We have demonstrated monodisperse production, sorting, coalescence, splitting, mixing, off-chip incubation and re-injection at high frequencies (up to 3 kHz). We describe the constraints and limitations under which satisfactory performances are obtained, and discuss the physics that controls each operation. For some operations, such as internal mixing, we obtained outstanding performances: for instance, in 75 fL droplets the mixing time was 45 μs, 35-fold faster than previously reported for a droplet microreactor. In practice, in all cases, a level of control comparable to nanolitre or picolitre droplet manipulation was obtained despite the 3 to 6 order of magnitude reduction in droplet volume. Remarkably, all the operations were performed using devices made using standard soft-lithography techniques and PDMS rapid prototyping. We show that femtolitre droplets can be used as microreactors for molecular biology with volumes one billion times smaller than conventional microtitre plate wells: in particular, the Polymerase Chain Reaction (PCR) was shown to work efficiently in 20 fL droplets.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4lc01122hDOI Listing

Publication Analysis

Top Keywords

droplet-based microfluidics
4
microfluidics femtolitre
4
femtolitre scale
4
scale built
4
built toolbox
4
toolbox modules
4
modules droplet-based
4
droplet-based microfluidic
4
microfluidic operations
4
operations femtolitre
4

Similar Publications

Machine learning-integrated droplet microfluidic system for accurate quantification and classification of microplastics.

Water Res

January 2025

Department of Mechanical Engineering, Sogang University, Seoul, South Korea; Institute of Integrated Biotechnology, Sogang University, Seoul, South Korea; Department of Biomedical Engineering, Sogang University, Seoul, South Korea; Institute of Smart Biosensor, Sogang University, Seoul, South Korea. Electronic address:

Microplastic (MP) pollution poses serious environmental and public health concerns, requiring efficient detection methods. Conventional techniques have the limitations of labor-intensive workflows and complex instrumentation, hindering rapid on-site field analysis. Here, we present the Machine learning (ML)-Integrated Droplet-based REal-time Analysis of MP (MiDREAM) system.

View Article and Find Full Text PDF

Droplet-based high-throughput 3D genome structure mapping of single cells with simultaneous transcriptomics.

Cell Discov

January 2025

Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.

Single-cell three-dimensional (3D) genome techniques have advanced our understanding of cell-type-specific chromatin structures in complex tissues, yet current methodologies are limited in cell throughput. Here we introduce a high-throughput single-cell Hi-C (dscHi-C) approach and its transcriptome co-assay (dscHi-C-multiome) using droplet microfluidics. Using dscHi-C, we investigate chromatin structural changes during mouse brain aging by profiling 32,777 single cells across three developmental stages (3 months, 12 months, and 23 months), yielding a median of 78,220 unique contacts.

View Article and Find Full Text PDF

The use of single-cell combinatorial indexing sequencing via droplet microfluidics presents an attractive approach for balancing cost, scalability, robustness and accessibility. However, existing methods often require tailored protocols for individual modalities, limiting their automation potential and clinical applicability. To address this, we introduce UDA-seq, a universal workflow that integrates a post-indexing step to enhance throughput and systematically adapt existing droplet-based single-cell multimodal methods.

View Article and Find Full Text PDF

Ionic Strength-Induced Compartmentalization for Nanogel-in-Microgel Colloids.

Small

January 2025

DWI-Leibniz Institute for Interactive Materials e.V., RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany.

Compartmentalization is crucial for control over complex biological cascade reactions. In microgels, the formation of discrete compartments allows for simultaneous uptake and orthogonal release of physicochemically distinct drugs, among others. However, many state-of-the-art approaches yielding compartmentalized microgels require the use of specific, though not always biocompatible, components and temperatures well above the physiological range, which may damage possible biological cargo.

View Article and Find Full Text PDF

Droplet-Based EPR Spectroscopy for Real-Time Monitoring of Liquid-Phase Catalytic Reactions.

Small Methods

January 2025

Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland.

In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!