Osteoporosis, an age associated skeletal disease, exhibits increased adipogenesis at the expense of osteogenesis from common osteoporotic bone marrow cells. In this study, black rice (Oryza sativa L.) extracts (BRE) were identified as osteogenic inducers. BRE stimulated the alkaline phosphatase (ALP) activity in both C3H10T1/2 and primary bone marrow cells. Similarly, BRE increased mRNA expression of ALP and osterix. Oral administration of BRE in OVX rats prevented decreases in bone density and strength. By contrast, BRE inhibited adipocyte differentiation of mesenchymal C3H10T1/2 cells and prevented increases in body weight and fat mass in high fat diet fed obese mice, further suggesting the dual effects of BRE on anti-adipogenesis and pro-osteogenesis. UPLC analysis identified cyanidin-3-O-glucoside and peonidin-3-O-glucoside as main anti-adipogenic effectors but not for pro-osteogenic induction. In mechanism studies, BRE selectively stimulated Wnt-driven luciferase activities. BRE treatment also induced Wnt-specific target genes such as Axin2, WISP2, and Cyclin D1. Taken together, these data suggest that BRE is a potentially useful ingredient to protect against age related osteoporosis and diet induced obesity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4fo00836g | DOI Listing |
Lancet Rheumatol
January 2025
US Department of Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA; University of Nebraska Medical Center, Omaha, NE, USA.
Background: Uncertainty exists regarding patient outcomes when using TNF inhibitors versus other biological and targeted synthetic disease-modifying antirheumatic drugs (DMARDs) in rheumatoid arthritis-associated interstitial lung disease (ILD). We compared survival and respiratory hospitalisation outcomes following initiation of TNF-inhibitor or non-TNF inhibitor biological or targeted synthetic DMARDs for treatment of rheumatoid arthritis-associated ILD.
Methods: We did a retrospective, active-comparator, new-user, observational cohort study with propensity score matching following the target trial emulation framework using US Department of Veterans Affairs (VA) electronic and administrative health records.
Sci Rep
December 2024
College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China.
Drug-drug co-amorphous systems are a promising approach to improve the aqueous solubility of poorly water-soluble drugs. This study explores the combination of breviscapine (BRE) and matrine (MAT) form an amorphous salt, aiming to synergistically enhance the solubility and dissolution of BRE. In silico analysis of electrostatic potential and local ionization energy were conducted on BRE-MAT complex to predict the intermolecular interactions, and solvent-free energies were calculated using thermodynamic integration and density functional theory.
View Article and Find Full Text PDFBiomaterials
May 2025
School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai, 201203, China. Electronic address:
This study aimed to address the challenges associated with the low oral bioavailability and the necessity for frequent dosing of breviscapine (BRE), a mainstream drug in the treatment of cardiovascular and cerebrovascular diseases. The poor solubility and permeability of BRE in the gastrointestinal tract were identified as significant barriers to effective drug absorption, thereby impacting therapeutic efficacy and patient compliance. To enhance the gastrointestinal absorption of BRE, particles loaded with BRE were engineered utilizing Cremophor EL (CrEL), an absorption enhancer, in conjunction with mesoporous silica, a biocompatible drug delivery vector, formulating mesoporous silica particles loaded with BRE and CrEL (BRE-CrEL@SiO).
View Article and Find Full Text PDFMol Ther
December 2024
Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. Electronic address:
J Appl Physiol (1985)
January 2025
Human Performance Laboratory, Ball State University, Muncie, Indiana, United States.
We previously observed a range of whole muscle and individual slow and fast myofiber size responses (mean: +4 to -24%) in quadriceps (vastus lateralis) and triceps surae (soleus) muscles of individuals undergoing 70 days of simulated microgravity with or without the NASA SPRINT exercise countermeasures program. The purpose of the current investigation was to further explore, in these same individuals, the content of myonuclei and satellite cells, both of which are key regulators of skeletal muscle mass. Individuals completed 6° head-down-tilt bedrest (BR, = 9), bedrest with resistance and aerobic exercise (BRE, = 9), or bedrest with resistance and aerobic exercise and low-dose testosterone (BRE + T, = 8).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!