Smad-independent pathway involved in transforming growth factor β1-induced Nox4 expression and proliferation of endothelial cells.

Naunyn Schmiedebergs Arch Pharmacol

Centre for Eye Research Australia, University of Melbourne, Level 1, 32 Gisborne Street, East Melbourne, VIC, 3002, Australia.

Published: March 2015

NADPH oxidase-derived reactive oxygen species are important for various cellular functions, including proliferation. Endothelial cells predominantly express the Nox4 isoform of NADPH oxidase, but it is not entirely clear how it is regulated. In this study, we investigated the signalling pathways involved in transforming growth factor-β1 (TGF-β1)-induced Nox4 expression and the proliferation of human microvascular endothelial cells (HMECs). TGF-β1 stimulated Nox4 messenger RNA and protein expression in HMECs. TGF-β1-induced Nox4 also increased hydrogen peroxide production, which was inhibited by diphenyleneiodonium and EUK134. The acute treatment of HMECs with TGF-β1 enhanced the phosphorylation of Smad2 and extracellular signal-regulated kinase (ERK) 1/2, without affecting p38MAPK, Akt, or Jun N-terminal kinase 1/2 (JNK1/2) pathways. Further, inhibition of Smad2 signalling using an inhibitor of activin receptor-linked kinase 5 SB431542 reduced TGF-β1-induced Nox4 expression, while inhibition of ERK1/2 with the inhibitor of mitogen-activated protein kinase kinase 1/2 U0126 decreased both basal and TGF-β1-induced Nox4 expression. Inhibition of ERK1/2 phosphorylation with U0126 did not affect Smad2 phosphorylation. Finally, TGF-β1 enhanced endothelial cell proliferation, which was reduced by U0126 but not by SB431542. These findings suggest that the non-canonical pathway ERK1/2 regulates Nox4 expression and may be involved in TGF-β1-induced proliferation of endothelial cells, which is vital during angiogenesis and vascular development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-014-1070-5DOI Listing

Publication Analysis

Top Keywords

nox4 expression
20
endothelial cells
16
tgf-β1-induced nox4
16
proliferation endothelial
12
involved transforming
8
transforming growth
8
nox4
8
expression proliferation
8
hmecs tgf-β1
8
tgf-β1 enhanced
8

Similar Publications

Exploring Liraglutide's mechanism in reducing renal fibrosis: the Fsp1-CoQ10-NAD(P)H pathway.

Sci Rep

January 2025

Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China.

Studies have confirmed that elevated glucose levels could lead to renal fibrosis through the process of ferroptosis. Liraglutide, a human glucagon-like peptide-1 (GLP-1) analogue, is a potential treatment option for diabetes. This study aimed to examine the potential of liraglutide (LIRA) in inhibiting ferroptosis and reducing high glucose-induced renal fibrotic injury in mice, and whether the Fsp1-CoQ10-NAD(P)H signal pathway is a mechanism for this effect.

View Article and Find Full Text PDF

Gasoline exhaust particles induce MMP1 expression via Nox4-derived ROS-ATF3-linked pathway in human umbilical vein endothelial cells.

Toxicology

January 2025

Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea.

Gasoline exhaust particles (GEP) are risk factors for cardiovascular disease. Activating transcription factor 3 (ATF3) is a transcription factor known to form a heterodimer with AP-1 transcription factors for its target gene expression. However, the involvement of ATF3 in GEP-induced gene expression in human umbilical vein endothelial cells (HUVECs) has not been investigated.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is increasingly recognized for its link to idiopathic pulmonary fibrosis (IPF), though the underlying mechanisms remain poorly understood. Histone lysine demethylase 6B (KDM6B) may either prevent or promote organ fibrosis, but its specific role in IPF is yet to be clarified. This study aimed to investigate the function and mechanisms of KDM6B in IPF and the exacerbating effects of OSA.

View Article and Find Full Text PDF

Extractable organic matter from PM inhibits cardiomyocyte differentiation via AHR-mediated mA RNA methylation.

J Hazard Mater

January 2025

The First Affiliated Hospital, MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-Communicable Diseases, China. Electronic address:

An ever-increasing body of research has established a link between maternal PM2.5 exposure and congenital heart diseases in the offspring, but the underlying mechanisms remain elusive. We recently reported that activation of the aryl hydrocarbon receptor (AHR) by PM2.

View Article and Find Full Text PDF

Anti-Inflammatory and Anticancer Effects of Kaurenoic Acid in Overcoming Radioresistance in Breast Cancer Radiotherapy.

Nutrients

December 2024

Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.

: Peroxisome proliferator-activated receptor γ (PPARγ) plays a key role in mediating anti-inflammatory and anticancer effects in the tumor microenvironment. Kaurenoic acid (KA), a diterpene compound isolated from (L.) Pruski, has been demonstrated to exert anti-inflammatory, anticancer, and antihuman immunodeficiency virus effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!