This study discusses manufacturing of metallic biomaterials by means of powder metallurgy with consideration for their unquestionable advantages, i.e. opportunities of obtaining materials with controllable porosity. The paper focuses on properties of 316 L stainless steel obtained using the method of powder metallurgy with respect to compacting pressure and sintering atmosphere. All the specimens were compacted at 700, 400 and 225 MPa, and sintered at 1250 °C. In order to analyze the sintering atmosphere, three different media were used: dissociated ammonia, hydrogen and vacuum. The study covered sintering density, porosity, microstructure analysis and corrosion resistance. The proposed method of powder metallurgy allowed for obtaining materials with predictable size and distribution of pores, depending on the parameters of sinter preparation (compaction force, sinter atmosphere). High corrosion resistance of the materials (sintering in the atmosphere of hydrogen and in vacuum) and high porosity in the sinters studied offer opportunities for using them for medical purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2012.09.010 | DOI Listing |
Materials (Basel)
December 2024
Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
Polydispersed Ag species-modified TiO samples with abundant oxygen vacancies were successfully prepared through the calcination of atomically precise Ag nanocluster-loaded TiO at an optimal temperature under a nitrogen atmosphere. The ligands of the Ag nanoclusters are removed by extracting lattice oxygen from TiO during the calcination, leading to the formation of CO, SO, and HO vapor. This process simultaneously induces Ag species sintering on the surface of TiO.
View Article and Find Full Text PDFSci Data
January 2025
Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54, Košice, Slovak Republic.
The present work describes the process of the creation and analysis of the first dataset containing processing parameters and functional properties of soft magnetic composites (SMC). All data were obtained experimentally using Fe-3% MgO system. When creating samples, parameters such as a size of MgO nanoparticles, pressing pressure, sintering temperature, time and atmosphere were varied.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Engineering, Norfolk State University, Norfolk, USA.
We report a controlled deposition process using atmospheric plasma to fabricate silver nanoparticle (AgNP) structures on polydimethylsiloxane (PDMS) substrates, essential for stretchable electronic circuits in wearable devices. This technique ensures precise printing of conductive structures using nanoparticles as precursors, while the relationship between crystallinity and plasma treatment is established through X-ray diffraction (XRD) analysis. The XRD studies provide insights into the effects of plasma parameters on the structural integrity and adhesion of AgNP patterns, enhancing our understanding of substrate stretchability and bendability.
View Article and Find Full Text PDFSci Total Environ
December 2024
State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China.
Iron and steel production (ISP) is one of significant atmospheric pollution emission sources in China. With the implementation of ultra-low emission (ULE) standards, a detailed and new updated emission inventory is urgently needed for better understanding of the temporal trends and spatial variation of emission characteristics. In this study, a unit-based comprehensive emission inventory of multiple hazardous air pollutants (HAPs) for the Chinese ISP spanned from 2012 to 2021, including the conventional pollutants, 13 kinds of Trace elements as well as 2 unconventional but toxic pollutants (PCDD/Fs, F), was dedicatedly developed by integrating dynamic localized emission factors with unit-based information of both the detailed activity level and abatement technology application.
View Article and Find Full Text PDFBiomater Adv
December 2024
Biomedical Engineering, The University of Melbourne, VIC 3010, Australia; The Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, VIC 3010, Australia. Electronic address:
Sacrificial templating offers the ability to create interconnected pores within 3D printed filaments and to control pore morphology. Beta-tricalcium phosphate (TCP) bone tissue engineering (BTE) scaffolds were fabricated with multiscale porosity: (i) macropores from direct ink writing (DIW, a material extrusion 3D printing technique), (ii) micropores from oil templating, and (iii) smaller micropores from partial sintering. The hierarchically porous scaffolds possessed a total porosity of 58-70 %, comprising 54-63 % interconnected open pores.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!