Synergistic toxic interactions between CYP2E1, LPS/TNFα, and JNK/p38 MAP kinase and their implications in alcohol-induced liver injury.

Adv Exp Med Biol

Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, Box 1603, One Gustave L. Levy Place, New York, NY, 10029, USA,

Published: March 2015

The mechanisms by which alcohol causes cell injury are not clear. Many pathways have been suggested to play a role in how alcohol induces oxidative stress. Considerable attention has been given to alcohol-elevated production of lipopolysaccharide (LPS) and TNFα and to alcohol induction of CYP2E1. These two pathways are not exclusive of each other; however, associations and interactions between them, especially in vivo, have not been extensively evaluated. We have shown that increased oxidative stress from induction of CYP2E1 in vivo sensitizes hepatocytes to LPS and TNFα toxicity and that oxidative stress, activation of p38 and JNK MAP kinases, and mitochondrial dysfunction are downstream mediators of this CYP2E1-LPS/TNFα potentiated hepatotoxicity. This Review will summarize studies showing potentiated interactions between these two risk factors in promoting liver injury and the mechanisms involved including activation of the mitogen-activated kinase kinase kinase ASK-1 as a result of CYP2E1-derived reactive oxygen intermediates promoting dissociation of the inhibitory thioredoxin from ASK-1. This activation of ASK-1 is followed by activation of the mitogen-activated kinase kinases MKK3/MKK6 and MKK4/MMK7 and subsequently p38 and JNK MAP kinases. Synergistic toxicity occurs between CYP2E1 and the JNK1 but not the JNK2 isoform as JNK1 knockout mice are completely protected against CYP2E1 plus TNFα toxicity, elevated oxidative stress, and mitochondrial dysfunction. We hypothesize that similar interactions occur as a result of ethanol induction of CYP2E1 and TNFα.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-09614-8_9DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
induction cyp2e1
12
liver injury
8
injury mechanisms
8
lps tnfα
8
tnfα toxicity
8
p38 jnk
8
jnk map
8
map kinases
8
mitochondrial dysfunction
8

Similar Publications

Background: Acute systemic inflammation affects many organs and it occurs in a wide range of conditions such as acute lung injury (ALI). Inflammation-triggered oxidative pathways together with the caspase activation seen in ALI, result in apoptosis. Dapagliflozin (DPG) is an agent that is known to have oxidative stress-reducing and anti-inflammatory effects in many tissues.

View Article and Find Full Text PDF

Purpose: Urinary cytokine changes may serve as biomarkers to assess treatment outcomes for interstitial cystitis/bladder pain syndrome (IC/BPS). This study analyzed the changes in urinary cytokines following various bladder therapies and explored their clinical significance in therapeutic mechanisms.

Methods: A total of 122 patients with IC/BPS treated with platelet-rich plasma (PRP), botulinum toxin-A (BoTN-A), hyaluronic acid (HA), or low-energy shock wave (LESW) were evaluated.

View Article and Find Full Text PDF

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

Metab Brain Dis

January 2025

Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.

View Article and Find Full Text PDF

Secondary brain damageafter traumatic brain injury (TBI) involves oxidative stress, neuroinflammation, apoptosis, and necroptosis and can be reversed by understanding these molecular pathways. The objective of this study was to examine the impact of tasimelteon (Tasi) administration on brain injury through the nuclear factor erythroid 2-related factor 2 (NRF-2)/heme oxygenase-1 (HO-1) and receptor-interacting protein kinase 1 (RIPK1)/receptor-interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like (MLKL) pathways in rats with TBI. Thirty-two male Wistar albino rats weighing 300-350 g were randomly divided into four groups: the control group, trauma group, Tasi-1 group (trauma + 1 mg/kg Tasi intraperitoneally), and Tasi-10 group (trauma + 10 mg/kg Tasi intraperitoneally).

View Article and Find Full Text PDF

Nephrotoxic effect of cypermethrin ameliorated by nanocurcumin through antioxidative mechanism.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia.

Cypermethrin is a pyrethroid showing nephrotoxicity by generating ROS-impaired oxidative stress and changes in inflammatory and apoptotic markers. The harmful consequences are intended to be mitigated by the imbalance between oxidants and antioxidants. The anti-inflammatory and antioxidant possessions of nanocurcumin (NC) with improved bioavailability ameliorate Cyp toxicity in rat kidneys.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!