Excision of unstable artificial gene-specific inverted repeats mediates scar-free gene deletions in Escherichia coli.

Appl Biochem Biotechnol

Industrial Biotechnology Division, Institute of Chemical & Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833.

Published: February 2015

AI Article Synopsis

Article Abstract

Inverted repeat and palindromic sequences have the propensity to form non-beta cruciform structures during DNA replication, leading to perturbations within the genome or plasmid replicon. In this study, the tolerance of the Escherichia coli genome to inverted repeat sequences from 25 to 1200 bp was investigated. Genomic inverted repeats were readily created via the homologous insertion of an overlap extension PCR product containing a gene-specific region of the genome together with thyA coding sequence, creating inverted repeat sequences of various lengths flanking the thyA selection marker in the resulting genome. Inverted repeat sequences below 100 bp were stably propagated, while those above and up to 1200 bp were found to be transiently unstable under auxotrophic thymine selection. Excision efficiency improves with increases of the inverted repeat until 600-800 bp, indicating that the genomic stability of inverted repeat sequences is due to secondary structure formation. Its effectiveness of creating precise and scar-free gene deletions was further demonstrated by deleting a number of genes in E. coli. The procedure can be readily adapted for sequence integration and point mutations in E. coli genome. It also has the potential for applications on other bacteria for efficient gene deletions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-014-1402-4DOI Listing

Publication Analysis

Top Keywords

inverted repeat
24
repeat sequences
16
gene deletions
12
inverted
8
inverted repeats
8
scar-free gene
8
escherichia coli
8
coli genome
8
genome inverted
8
repeat
6

Similar Publications

Lab on a single microbead: An enzyme-free strategy for the sensitive detection of microRNA via efficient localized catalytic hairpin assembly.

Anal Chim Acta

February 2025

Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China. Electronic address:

Background: Accurate quantification of microRNA (miRNA) is of great significance because it provides opportunities for the accurate early diagnosis of a series of human diseases including cancers. Currently, complicated nucleic acid amplification technologies are always required for the highly sensitive miRNA detection. The introduction of nucleic acid signal amplification coupled with various enzymes will inevitably lead to tedious work and increase the complexity of the analysis process.

View Article and Find Full Text PDF

Six novel phages belonging to the family were isolated using as a host. Phages MuffinTheCat, Badulia, DesireeRose, Bee17, SCoupsA, and LuzDeMundo were purified from environmental samples by students participating in the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program at Alliance University, New York. The phages have linear dsDNA genomes 15,438-15,636 bp with 112-120 bp inverted terminal repeats.

View Article and Find Full Text PDF

: Section is the most diverse group in the genus L., and this group of plants has a long history of cultivation in China as popular ornamental flowers and oil plants. Sect.

View Article and Find Full Text PDF

Miniature-inverted-repeat transposable elements contribute to phenotypic variation regulation of rice induced by space environment.

Front Plant Sci

January 2025

Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China.

Introduction: Rice samples exposed to the space environment have generated diverse phenotypic variations. Miniature-inverted-repeat transposable elements (MITEs), often found adjacent to genes, play a significant role in regulating the plant genome. Herein, the contribution of MITEs in regulating space-mutagenic phenotypes was explored.

View Article and Find Full Text PDF

Hance is an important plant owing to its medicinal root and edible fruit, and extensively distributed in China. In this study, we reported the complete chloroplast genome of . The chloroplast genome was 156,335 bp in size with the overall GC content of 37.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!