A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Forward genetic screening for regulators involved in cholesterol synthesis using validation-based insertional mutagenesis. | LitMetric

Forward genetic screening for regulators involved in cholesterol synthesis using validation-based insertional mutagenesis.

PLoS One

Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; College of Life Sciences, Wuhan University, Wuhan, China.

Published: July 2015

Somatic cell genetics is a powerful approach for unraveling the regulatory mechanism of cholesterol metabolism. However, it is difficult to identify the mutant gene(s) due to cells are usually mutagenized chemically or physically. To identify important genes controlling cholesterol biosynthesis, an unbiased forward genetics approach named validation-based insertional mutagenesis (VBIM) system was used to isolate and characterize the 25-hydroxycholesterol (25-HC)-resistant and SR-12813-resistant mutants. Here we report that five mutant cell lines were isolated. Among which, four sterol-resistant mutants either contain a truncated NH2-terminal domain of sterol regulatory element-binding protein (SREBP)-2 terminating at amino acids (aa) 400, or harbor an overexpressed SREBP cleavage-activating protein (SCAP). Besides, one SR-12813 resistant mutant was identified to contain a truncated COOH-terminal catalytic domain of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase). This study demonstrates that the VBIM system can be a powerful tool to screen novel regulatory genes in cholesterol biosynthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245081PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112632PLOS

Publication Analysis

Top Keywords

validation-based insertional
8
insertional mutagenesis
8
cholesterol biosynthesis
8
vbim system
8
forward genetic
4
genetic screening
4
screening regulators
4
regulators involved
4
cholesterol
4
involved cholesterol
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!