A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanodiamond surface redox chemistry: influence of physicochemical properties on catalytic processes. | LitMetric

Modification of an electrode with an immobilised layer of nanodiamond is found to significantly enhance the recorded currents for reversible oxidation of ferrocene methanol (FcMeOH). Current enhancement is related to nanodiamond diameter, with enhancement increasing in the order 1000 nm < 250 nm < 100 nm < 10 nm < 5 nm. We attribute the current enhancement to two catalytic processes: i) electron transfer between the solution redox species and redox-active groups on the nanodiamond surface; ii) electron transfer mediated by FcMeOH(+) adsorbed onto the nanodiamond surface. The first process is pH dependent as it depends on nanodiamond surface functionalities for which electron transfer is coupled to proton transfer. The adsorption-mediated process is observed most readily at slow scan rates and is due to self-exchange between adsorbed FcMeOH(+) and FcMeOH in solution. FcMeOH(+) has a strong electrostatic affinity for the nanodiamond surface, as confirmed by in situ infrared (IR) experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4fd00041bDOI Listing

Publication Analysis

Top Keywords

nanodiamond surface
20
electron transfer
12
catalytic processes
8
current enhancement
8
nanodiamond
7
surface redox
4
redox chemistry
4
chemistry influence
4
influence physicochemical
4
physicochemical properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!