AI Article Synopsis

  • Cellulose acetate (CA)-based membranes can regulate magnesium (Mg) dissolution by incorporating the polyelectrolyte poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA), adjusting permeability.
  • The membranes, analyzed using FT-IR techniques, swell in water to manage ion and hydrogen gas flow.
  • By modifying the CA:PDMAEMA ratio, it's possible to control the rate at which Mg dissolves, making it a promising option for temporary biomedical implants while minimizing side effects from corrosion products.

Article Abstract

Cellulose acetate (CA)-based membranes are used for Mg dissolution control: the permeability of the membrane is adjusted by additions of the polyelectrolyte, poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA). Spin-coated films were characterized with FT-IR, and once exposed to an aqueous solution the film distends and starts acting as a membrane which controls the flow of ions and H2 gas. Electrochemical measurements (linear sweep voltammograms, open-circuit potential, and polarization) show that by altering the CA:PDMAEMA ratio the dissolution rate of Mg can be controlled. Such a control over Mg dissolution is crucial if Mg is to be considered as a viable, temporary biomedical implant material. Furthermore, the accumulation of corrosion products between the membrane and the sample diminishes the undesirable effects of high local pH and H2 formation which takes place during the corrosion process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am5063597DOI Listing

Publication Analysis

Top Keywords

dissolution control
8
dissolution
4
control cellulose
4
cellulose acetate-polyelectrolyte
4
acetate-polyelectrolyte membranes
4
membranes cellulose
4
cellulose acetate
4
acetate ca-based
4
ca-based membranes
4
membranes dissolution
4

Similar Publications

Background: Cystic echinococcosis (CE) is a common neglected parasitic disease. Nanoparticles containing drugs have been widely utilized in various formulations for several purposes, including improving the bioavailability of drugs by increasing the solubility and dissolution rate of the nanoparticles. The purpose of this study was to evaluate the effects of solid lipid nanoparticles containing albendazole and conjugated to albumin (B-SLN + ABZ) as a novel treatment approach for hydatid cysts in vivo.

View Article and Find Full Text PDF

Reductive dechlorination of trichloroethene at concentrations approaching saturation by a Desulfitobacterium-containing community.

J Hazard Mater

December 2024

School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, China; State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment,  Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China. Electronic address:

In dense nonaqueous phase liquid (DNAPL) contaminant source zones, aqueous concentrations of trichloroethene (TCE) in groundwater may approach saturation levels (8.4 mM). It is generally believed that such saturation concentrations are toxic to organohalide-respiring bacteria (OHRB), thus limiting the effectiveness of bioremediation.

View Article and Find Full Text PDF

Studies on Morphological Evolution of Gravure-Printed ZnO Thin Films Induced by Low-Temperature Vapor Post-Treatment.

Nanomaterials (Basel)

December 2024

Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Centre, P.le E. Fermi 1, Portici, 80055 Naples, Italy.

In recent years, the morphology control of semiconductor nanomaterials has been attracting increasing attention toward maximizing their functional properties and reaching their end use in real-world devices. However, the development of easy and cost-effective methods for preparing large-scale patterned semiconductor structures on flexible temperature-sensitive substrates remains ever in demand. In this study, vapor post-treatment (VPT) is investigated as a potential, simple and low-cost post-preparative method to morphologically modify gravure-printed zinc oxide (ZnO) nanoparticulate thin films at low temperatures.

View Article and Find Full Text PDF

Aim: All commercial chelating gels contain EDTA which reacts chemically with sodium hypochlorite (NaOCl). This research aimed to develop a non-EDTA clodronate gel and to measure physicochemical and functional gel properties of the novel and commercial gels.

Methodology: A 1.

View Article and Find Full Text PDF

Supersaturated Gel Formulation (SGF) of Atorvastatin at a Maximum Dose of 80 mg with Enhanced Solubility, Dissolution, and Physical Stability.

Gels

December 2024

College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea.

The objective of this work was to develop a supersaturated gel formulation (SGF) loaded with the maximum atorvastatin calcium trihydrate (ATR) dose. The maximum dose strength of ATR needs to be reduced through improving solubility and dissolution rate to mitigate side effects due to the necessity of taking high doses. ATR has highly pH-dependent solubility at 37 °C, leading to poor solubility (<10 μg/mL) in stomach acid (pH 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!