Transition from latency to active tuberculosis requires Mycobacterium tuberculosis (Mtb) to penetrate the phagosomal membrane and translocate to the cytosol of the host macrophage. Quantitative two-photon fluorescence resonance energy transfer (FRET) microscopy is developed to measure cytosolic translocation using Mycobacterium marinum (Mm) as a model organism for Mtb. Macrophages were infected with Mm or non-pathogenic Mycobacterium smegmatis (Ms) as a control, then loaded with a FRET substrate. Once translocation occurs, mycobacterium-bearing β-lactamase cleaves the substrate, resulting in decrease of FRET signal. Quantification of this FRET signal change revealed that Mm, but not Ms, is capable of translocating to the cytosol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242033PMC
http://dx.doi.org/10.1364/BOE.5.003990DOI Listing

Publication Analysis

Top Keywords

cytosolic translocation
8
two-photon fluorescence
8
fluorescence resonance
8
resonance energy
8
energy transfer
8
fret signal
8
imaging cytosolic
4
translocation mycobacteria
4
mycobacteria two-photon
4
transfer microscopy
4

Similar Publications

Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.

View Article and Find Full Text PDF

Unlabelled: Pathogenic strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol.

View Article and Find Full Text PDF

Glucose is the most abundant monosaccharide and a principal substrate in biotechnological production processes. In Pseudomonas, this sugar is either imported directly into the cytosol or first oxidised to gluconate in the periplasm. While gluconate is taken up via a proton-driven symporter, the import of glucose is mediated by an ABC-type transporter, and hence both require energy.

View Article and Find Full Text PDF

How FocA facilitates fermentation and respiration of formate by .

J Bacteriol

January 2025

Institute for Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany.

Formic acid is an important source of reductant and energy for many microorganisms. Formate is also produced as a fermentation product, e.g.

View Article and Find Full Text PDF

Human exposure to arsenicals is associated with devastating diseases such as cancer and neurodegeneration. At the same time, arsenic-based drugs are used as therapeutic agents. The ability of arsenic to directly bind to proteins is correlated with its toxic and therapeutic effects highlighting the importance of elucidating arsenic-protein interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!