Malignant transformation induced by simian sarcoma virus is mediated by its v-sis protein, the monkey homolog of the platelet-derived growth factor (PDGF) B chain. By use of an appropriately engineered baculovirus expression vector, the v-sis protein was expressed in the insect cell line Spodoptera frugiperda (Sf9) at a level 50- to 100-fold higher than that observed with overexpression in mammalian-cell transfectants. The sis protein produced by Sf9 cells underwent processing similar to that observed in mammalian cells, including efficient disulfide-linked dimer formation. Moreover, the recombinant sis protein was capable of binding PDGF receptors and inducing DNA synthesis as efficiently as PDGF-B synthesized by mammalian cells. A significant fraction of sis protein was released from Sf9 cells, which made possible a one-step immunoaffinity purification to near homogeneity with a 40% recovery of biological activity. These results demonstrate that a protein whose normal processing requires both intrachain and interchain disulfide-bridge formation can be efficiently expressed in a biologically active form in insect cells by using a baculovirus vector system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC250864PMC
http://dx.doi.org/10.1128/JVI.63.7.3080-3086.1989DOI Listing

Publication Analysis

Top Keywords

sis protein
12
biologically active
8
growth factor
8
baculovirus vector
8
vector system
8
v-sis protein
8
sf9 cells
8
mammalian cells
8
protein
7
cells
5

Similar Publications

In this study, a series of 16 arylidenehydrazide derivatives (7a-7p), hybridized with the natural product carvacrol, were successfully synthesized starting from anthranilic acid methyl ester. The cytotoxic effects of these compounds were examined against two different cell lines, A549 and BEAS-2B. Additionally, in silico studies were conducted to investigate the ligand-protein binding modes and their stabilities.

View Article and Find Full Text PDF

Label-free 3D cell imaging using hydrogels functionalized with switchable iridium complexes.

Chemistry

January 2025

Istituto di Ricerche Farmacologiche Mario Negri, Laboratory of Biochemistry and Protein Chemistry, Via Mario Negri, 2, 20156, Milano, ITALY.

The use of fluorescent labels is the most common tool to visualize cells. However, the internalization of dye molecules often modifies the cell behavior. In this paper we demonstrate that it is possible to transiently label cells using a 3D scaffold, a hydrogel, covalently functionalized with luminescent cyclometalated iridium(III) complexes.

View Article and Find Full Text PDF

Here, we investigated the relationship between the attenuation of lung cancer growth due to oral administration of Euglena gracilis water extract (EWE) and T cell stimulation. Orally administered EWE was revealed to increase PD-1 and PD-L1 mRNA and proteins primarily in tumor-infiltrating lymphocytes (TILs), which was correlated with a significant decrease in the tumor weights in mice. A combination treatment with EWE and anti-PD-1 antibody significantly decreased the growth of murine lung tumors more than treatment with either alone by increasing the number of TILs and attenuating T cell exhaustion.

View Article and Find Full Text PDF

Characterization of 53 Multiplexed Targeted Proteomics Assays for Verification Studies in Cancer Cell Lines.

J Proteome Res

January 2025

Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital and McGill University, Montreal, Quebec H3T 1E2, Canada.

The National Cancer Institute's Clinical Proteomics Tumor Analysis Consortium (CPTAC) was established to address the need for improved design, standardization, and validation of proteomics assays to enable better translation of biomarkers from the analytical lab to the clinic. Here, we applied CPTAC guidelines to characterize quantitative mass spectrometry (MS) assays in a new multiple reaction monitoring (MRM) proteomics panel. The panel of 50 proteins was developed in response to a previous study that identified a proteomic profile of altered translational control associated with response to a new cancer drug.

View Article and Find Full Text PDF

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!