Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antimicrobial peptides, as a new class of antibiotics, have generated tremendous interest as potential alternatives to classical antibiotics. However, the large-scale production of antimicrobial peptides remains a significant challenge. This paper reports a simple and low-cost chromatography-free platform technology for producing antimicrobial peptides in Escherichia coli (E. coli). A fusion protein comprising a variant of the helical biosurfactant protein DAMP4 and the known antimicrobial peptide pexiganan is designed by joining the two polypeptides, at the DNA level, via an acid-sensitive cleavage site. The resulting DAMP4(var)-pexiganan fusion protein expresses at high level and solubility in recombinant E. coli, and a simple heat-purification method was applied to disrupt cells and deliver high-purity DAMP4(var)-pexiganan protein. Simple acid cleavage successfully separated the DAMP4 variant protein and the antimicrobial peptide. Antimicrobial activity tests confirmed that the bio-produced antimicrobial peptide has the same antimicrobial activity as the equivalent product made by conventional chemical peptide synthesis. This simple and low-cost platform technology can be easily adapted to produce other valuable peptide products, and opens a new manufacturing approach for producing antimicrobial peptides at large scale using the tools and approaches of biochemical engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.25505 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!