A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Validation of bone marrow fat quantification in the presence of trabecular bone using MRI. | LitMetric

Background: To validate six-echo, chemical-shift based MRI with T2 * correction for the quantification of bone marrow fat content in the presence of trabecular bone.

Methods: Ten bone phantoms were made using trabecular bone cores extracted from the distal femur and proximal tibia of 20 human cadaveric knees. Bone marrow was removed from the cores and the marrow spaces were filled with water-fat gelatin to mimic bone marrow of known fat fractions. A chemical-shift based water-fat separation method with T2 * correction was used to generate fat fraction maps. The proton density fat fractions (PDFF) between marrow regions with and without bone were compared with the reference standard of known fat fraction using the squared Pearson correlation coefficient and unpaired t-test.

Results: Strong correlations were found between the known fat fraction and measured PDFF in marrow without trabecular bone (R(2) = 0.99; slope = 0.99, intercept = 0.94) as well as in marrow with trabecular bone (R(2) = 0.97; slope = 1.0, intercept = -3.58). Measured PDFF between regions with and without bone were not significantly different (P = 0.5). However, PDFF was systematically underestimated by -3.2% fat fraction in regions containing trabecular bone.

Conclusion: Our implementation of a six-echo chemical-shift based MRI pulse sequence with T2 * correction provided an accurate means of determining fat content in bone marrow in the presence of trabecular bone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442769PMC
http://dx.doi.org/10.1002/jmri.24795DOI Listing

Publication Analysis

Top Keywords

bone marrow
20
trabecular bone
20
fat fraction
16
marrow fat
12
presence trabecular
12
bone
12
chemical-shift based
12
marrow
9
fat
9
six-echo chemical-shift
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!