Development of a broad-spectrum synthetic vaccine against TB would represent an important advance to the limited vaccine armamentarium against TB. It is believed that the esx family of TB antigens may represent important vaccine candidates. However, only 4 esx antigens have been studied as potential vaccine antigens. The challenge remains to develop a vaccine that simultaneously targets all 23 members of the esx family to induce enhanced broad-spectrum cell-mediated immunity. We sought to investigate if broader cellular immune responses could be induced using a multivalent DNA vaccine representing the esx family protein members delivered via electroporation. In this study, 15 designed esx antigens were created to cross target all members of the esx family. They were distributed into groups of 3 self-processing antigens each, resulting in 5 trivalent highly optimized DNA plasmids. Vaccination with all 5 constructs elicited robust antigen-specific IFN-γ responses to all encoded esx antigens and induced multifunctional CD4 Th1 and CD8 T cell responses. Importantly, we show that when all constructs are combined into a cocktail, the RSQ-15 vaccine, elicited substantial broad Ag-specific T cell responses to all esx antigens as compared with vaccination with BCG. Moreover, these vaccine-induced responses were highly cross-reactive with BCG encoded esx family members and were highly immune effective in a BCG DNA prime-boost format. Furthermore, we demonstrate the vaccine potential and immunopotent profile of several novel esx antigens never previously studied. These data highlight the likely importance of these novel immunogens for study as preventative or therapeutic synthetic TB vaccines in combination or as stand alone antigens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896768 | PMC |
http://dx.doi.org/10.4161/hv.29574 | DOI Listing |
Crit Rev Biochem Mol Biol
October 2024
Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India.
() is one of the most successful human pathogens, causing a severe and widespread infectious disease. The frequent emergence of multidrug-resistant (MDR) strains has exacerbated this public health crisis, particularly in underdeveloped regions. employs a sophisticated array of virulence factors to subvert host immune responses, both innate and adaptive.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China.
PE/PPE proteins secreted by the ESX-5 type VII secretion system constitute a major protein repertoire in pathogenic mycobacteria and are essential for bacterial survival, pathogenicity, and host-pathogen interaction; however, little is known about their expression and secretion. The scarcity of arginine and lysine residues in PE/PPE protein sequences and the high homology of their N-terminal domains limit protein identification using classical trypsin-based proteomic methods. This study used endoproteinase AspN and trypsin to characterize the proteome of Twenty-seven PE/PPE proteins were uniquely identified in AspN digests, especially PE_PGRS proteins.
View Article and Find Full Text PDFmBio
September 2024
Department of Biology, Lund University, Lund, Sweden.
Unlabelled: Serine protease inhibitors (serpins) constitute the largest family of protease inhibitors expressed in humans, but their role in infection remains largely unexplored. In infected macrophages, the mycobacterial ESX-1 type VII secretion system permeabilizes internal host membranes and causes leakage into the cytosol of host DNA, which induces type I interferon (IFN) production via the cyclic GMP-AMP synthase (cGAS) and stimulator of IFN genes (STING) surveillance pathway, and promotes infection . Using the infection model, we show that ESX-1-mediated type I IFN signaling in macrophages selectively induces the expression of and , two cytosolic serpins of the clade A3.
View Article and Find Full Text PDFUnlabelled: Phagosomal lysis is a key aspect of mycobacterial infection of host macrophages. Acetylation is a protein modification mediated enzymatically by N-acetyltransferases (NATs) that impacts bacterial pathogenesis and physiology. To identify NATs required for lytic activity, we leveraged a nontubercular pathogen and an established model for hemolysis is a proxy for phagolytic activity.
View Article and Find Full Text PDFMicroorganisms
June 2024
Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands.
The Esx-1 family proteins of the Type VII secretion systems of and have been assessed and are frequently used as candidates for tuberculosis (TB) diagnosis in both humans and animals. The presence of ESAT-6 and CFP 10 proteins, which are the most immunogenic proteins of the Esx-1 system and have been widely investigated for the immunodiagnosis of tuberculosis, in some and in , poses limitations for their use in specific diagnoses of TB. As such, to improve the specificity of the ESAT-6/CFP 10-based cell-mediated immunity (CMI) assays, other proteins encoded by genes within and outside the RD 1 region of the esx-1 locus have been evaluated as candidate antigens for CMI, as well as to investigate humoral responses in combination with ESAT-6 and or CFP 10, with varying specificity and sensitivity results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!