In situ forming poly(lactic-co-glycolic acid) (PLGA) implants have not been strongly considered for bone applications because of their poor mechanical properties. Here, in situ forming scaffolds containing hydroxyapatite micro- and nanoparticles were characterized to determine their mechanical properties, injectability, and microarchitecture. Scaffolds were prepared with various concentrations of hydroxyapatite, as well as poly(β-amino ester) microparticles that facilitate drug delivery. Strength was increased threefold, from 2 to 6 MPa, while compressive modulus was improved sixfold, from 24 to 141 MPa, via the addition of 30% nanohydroxyapatite, which provided greater benefits at equivalent concentrations compared to micro-hydroxyapatite. Scaffolds retained a uniformly porous microarchitecture, and hydroxyapatite particles were distributed evenly throughout the PLGA phase. Injectability, determined by the force required to inject 0.5 mL of material within 60 s, remained clinically acceptable at <50 N at 30% w/w hydroxyapatite and up to 10% w/w PBAE microparticles. Ex vivo injections into intact porcine femoral heads increased compressive modulus of trabecular bone from 81 to 180 MPa and strength from 3.5 to 5.9 MPa. This injectable scaffold offers mechanical reinforcement coupled with previously demonstrated drug delivery potential in a single injection for bone-weakening conditions, such as osteonecrosis or osteoporosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.35375 | DOI Listing |
Background: Neuropathologic inclusions formed by hyperphosphorylated protein tau in the brain are a hallmark of Alzheimer's disease and other human neurodegenerative disorders commonly referred to as tauopathies. Tau lesions differ in their disease-specific morphological presentations, affected cell type, subcellular compartments and tau isoforms present in the inclusions. In addition, tau filaments isolated from different tauopathies have distinct fibrillar structures that potentially underlie the morphological diversity of tau lesions.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.
Real-time monitoring of dynamic microvesicles (MVs), vesicles associated with living cells, is of great significance in deeply understanding their origin, transport, and function. However, specific labeling MVs poses a challenge due to the lack of unique biomarkers that differentiate them from other cellular compartments. Here, we present a strategy to selectively label MVs by evaluating a series of lipid layer-sensitive cationic indolium-coumarin fluorescent probes (designated as IC-C, with ranging from 1 to 18) that feature varying aliphatic side chains (CH).
View Article and Find Full Text PDFEMBO Mol Med
January 2025
The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China.
The adoptive transfer of TCR-T cells specific to neoantigens preferentially exhibits potent cytotoxicity to tumor cells and has shown promising efficacy in various preclinical human cancers. In this study, we first identified a functional TCR, Tcr-1, which selectively recognized the SYT-SSX fusion neoantigen shared by most synovial sarcomas. Engineered T-cell expressing Tcr-1 (Tcr-T1) demonstrated HLA-A*2402-restricted, antigen-specific anti-tumoral efficacy against synovial sarcoma cells, both in vitro and in vivo.
View Article and Find Full Text PDFNat Commun
January 2025
College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei, PR China.
C-C and C-X bond forming reactions are essential tools in organic synthesis, constantly revolutionizing human life. Among the key methods for constructing new chemical bonds are nucleophilic addition reactions involving imines. However, the inherent challenges in synthesizing and storing imines have stimulated interest in designing stable precursors, which generates imines in situ during the reaction.
View Article and Find Full Text PDFNat Commun
January 2025
MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia.
Current assays fail to address breast cancer's complex biology and accurately predict treatment response. On a retrospective cohort of 1082 female breast tissues, we develop and validate mFISHseq, which integrates multiplexed RNA fluorescent in situ hybridization with RNA-sequencing, guided by laser capture microdissection. This technique ensures tumor purity, unbiased whole transcriptome profiling, and explicitly quantifies intratumoral heterogeneity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!