A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Presentation of an experimental method to induce in vitro ("organ chambers") respiratory acidosis and its effect on vascular reactivity. | LitMetric

Purpose: To create in vitro a model to generate acidosis by CO2 bubbling "organ chambers", which would be useful for researchers that aim to study the effects of acid-base disturbs on the endothelium-dependent vascular reactivity.

Methods: Eighteen male Wistar rats (230-280 g) were housed, before the experiments, under standard laboratory conditions (12h light/dark cycle at 21°C), with free access to food and water. The protocol for promoting in vitro respiratory acidosis was carried out by bubbling increased concentrations of CO2. The target was to achieve an ideal way to decrease the pH gradually to a value of approximately 6.6.It was used, initially, a gas blender varying concentrations of the carbogenic mixture (95% O2 + 5% CO2) and pure CO2.

Results: 1) 100% CO2, pH variation very fast, pH minimum 6.0; 2) 90%CO2 pH variation bit slower, pH minimum 6.31; 3) 70%CO2, pH variation slower, pH minimum 6.32; 4) 50% CO2, pH variation slower, pH minimum 6:42; 5) 40 %CO2, Adequate record, pH minimum 6.61, and; 6) 30 %CO2 could not reach values below pH minimum 7.03. Based on these data the gas mixture (O2 60% + CO2 40%) was adopted.

Conclusion: This gas mixture (O2 60% + CO2 40%) was effective in inducing respiratory acidosis at a speed that made, possible the recording of isometric force.

Download full-text PDF

Source
http://dx.doi.org/10.1590/s0102-86502014001800003DOI Listing

Publication Analysis

Top Keywords

respiratory acidosis
12
slower minimum
12
"organ chambers"
8
co2 variation
8
variation slower
8
gas mixture
8
mixture 60%
8
60% co2
8
co2 40%
8
co2
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!