Detection and correction of artefacts in estimation of rare copy number variants and analysis of rare deletions in type 1 diabetes.

Hum Mol Genet

JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK,

Published: March 2015

Copy number variants (CNVs) have been proposed as a possible source of 'missing heritability' in complex human diseases. Two studies of type 1 diabetes (T1D) found null associations with common copy number polymorphisms, but CNVs of low frequency and high penetrance could still play a role. We used the Log-R-ratio intensity data from a dense single nucleotide polymorphism (SNP) array, ImmunoChip, to detect rare CNV deletions (rDELs) and duplications (rDUPs) in 6808 T1D cases, 9954 controls and 2206 families with T1D-affected offspring. Initial analyses detected CNV associations. However, these were shown to be false-positive findings, failing replication with polymerase chain reaction. We developed a pipeline of quality control (QC) tests that were calibrated using systematic testing of sensitivity and specificity. The case-control odds ratios (OR) of CNV burden on T1D risk resulting from this QC pipeline converged on unity, suggesting no global frequency difference in rDELs or rDUPs. There was evidence that deletions could impact T1D risk for a small minority of cases, with enrichment for rDELs longer than 400 kb (OR = 1.57, P = 0.005). There were also 18 de novo rDELs detected in affected offspring but none for unaffected siblings (P = 0.03). No specific CNV regions showed robust evidence for association with T1D, although frequencies were lower than expected (most less than 0.1%), substantially reducing statistical power, which was examined in detail. We present an R-package, plumbCNV, which provides an automated approach for QC and detection of rare CNVs that can facilitate equivalent analyses of large-scale SNP array datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381751PMC
http://dx.doi.org/10.1093/hmg/ddu581DOI Listing

Publication Analysis

Top Keywords

copy number
12
number variants
8
type diabetes
8
snp array
8
t1d risk
8
t1d
5
detection correction
4
correction artefacts
4
artefacts estimation
4
rare
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!