he aim of this study was to obtain a cell-penetrating cytoglobin (Cygb), which combines the transmembrane function of cell-penetrating peptides TAT with the anti-aging and anti-fibrotic role of cytoglobin. The Cygb gene was complexed with TAT gene by overlapping PCR, inserted into the vector pET22b to construct the recombinant expression plasmid (pET22b-TAT-Cygb) and then transformed into Escherichia coli BL21 (DE3). The fusion protein TAT-Cygb, whose expression was induced by lactose, was purified by CM Sepharose Fast Flow Protocol and verified by Western blotting. The final TAT-Cygb had a molecular weight of 23 kDa with 95% purity, as shown by SDS-PAGE. As demonstrated by bioactivity experiments, TAT-Cygb exhibited a high specific peroxidase activity up to (422.30 ± 0.36) U/mg. Both TAT-Cygb and Cygb pretreatment group could protect Hacat cells against oxidation of H2O2, but only TAT-Cygb treatment group could remedy cells injuried by H2O2 (RGR = 98%), which was significantly different from Cygb treatment group (RGR = 79%). We successfully obtained the bioactive and cell-penetrating fusion protein TAT-Cygb that has the potential application in anti-aging, anti-fibrotic and anti-cancer.

Download full-text PDF

Source

Publication Analysis

Top Keywords

fusion protein
12
cytoglobin cygb
8
anti-aging anti-fibrotic
8
protein tat-cygb
8
treatment group
8
tat-cygb
6
[expression purification
4
purification characterization
4
characterization fusion
4
protein tat-cytoglobin]
4

Similar Publications

The protein interactome of p65/RELA, the most active subunit of the transcription factor (TF) NF-κB, has not been previously determined in living cells. Using p65-miniTurbo fusion proteins and biotin tagging, we identify >350 RELA interactors from untreated and IL-1α-stimulated cells, including many TFs (47% of all interactors) and >50 epigenetic regulators belonging to different classes of chromatin remodeling complexes. A comparison with the interactomes of two point mutants of p65 reveals that the interactions primarily require intact dimerization rather than DNA-binding properties.

View Article and Find Full Text PDF

Yeast sex-hormone whole-cell biosensors are analytical tools characterized by long-time storage and low production cost. We engineered compact β-estradiol biosensors in S. cerevisiae cells by leveraging short (20-nt long) operators bound by the fusion protein LexA-ER-VP64-where ER is the human estrogen receptor and VP64 a strong viral activation domain.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a haematological lymphoid malignancy marked by significant morbidity due to severe complications. Despite advances in targeted therapies, including proteasome inhibitors and the BCL-2 inhibitor venetoclax, drug resistance frequently occurs, with the underlying mechanisms poorly understood. This study investigates the role of lysosome-associated protein transmembrane 5 (LAPTM5) in conferring resistance to venetoclax in relapsed MM.

View Article and Find Full Text PDF

Monocyte-cancer cell fusion is mediated by phosphatidylserine-CD36 receptor interaction and induced by ionizing radiation.

PLoS One

January 2025

Division of Cell- and Neurobiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.

Emerging evidence suggests that fusion of cancer cells with leucocytes, such as macrophages, plays a significant role in cancer metastasis and results in tumor hybrid cells that acquire resistance to chemo- and radiation therapy. However, the precise mechanisms behind the leukocyte-cancer cell fusion remain unclear. The present in vitro study explores the presence of fusion between the monocyte cell line (THP-1) and the breast cancer cell line (MCF-7) in relation to the expression of CD36 and phosphatidylserine with and without treatment of these cells with ionizing radiation.

View Article and Find Full Text PDF

Studies have noted the connection between Mycobacterium avium subspecies paratuberculosis (MAP) and autoimmunity. MAP is an intracellular pathogen that infects and multiplies in macrophages. To overcome the hostile environment elicited by the macrophage, MAP secretes a battery of virulence factors to neutralize the toxic effects of the macrophage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!