As the world's second largest economy, China has experienced severe haze pollution, with fine particulate matter (PM) recently reaching unprecedentedly high levels across many cities, and an understanding of the PM formation mechanism is critical in the development of efficient mediation policies to minimize its regional to global impacts. We demonstrate a periodic cycle of PM episodes in Beijing that is governed by meteorological conditions and characterized by two distinct aerosol formation processes of nucleation and growth, but with a small contribution from primary emissions and regional transport of particles. Nucleation consistently precedes a polluted period, producing a high number concentration of nano-sized particles under clean conditions. Accumulation of the particle mass concentration exceeding several hundred micrograms per cubic meter is accompanied by a continuous size growth from the nucleation-mode particles over multiple days to yield numerous larger particles, distinctive from the aerosol formation typically observed in other regions worldwide. The particle compositions in Beijing, on the other hand, exhibit a similarity to those commonly measured in many global areas, consistent with the chemical constituents dominated by secondary aerosol formation. Our results highlight that regulatory controls of gaseous emissions for volatile organic compounds and nitrogen oxides from local transportation and sulfur dioxide from regional industrial sources represent the key steps to reduce the urban PM level in China.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267398 | PMC |
http://dx.doi.org/10.1073/pnas.1419604111 | DOI Listing |
Environ Sci Technol
December 2024
State Ecology and Environment Scientific Observation and Research Station for the Yangtze River Delta at Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200030, China.
Biomass burning is an important source of brown carbon (BrC) aerosols, which influence climate by affecting the Earth's radiative balance. However, the transformation pathways of BrC chromophores, especially in the presence of photochemically active species, such as nitrate, are not well understood. In this study, the nitrate-mediated aqueous-phase photooxidation of three typical BrC chromophores from biomass burning was investigated, including 4-nitrocatechol, 3-nitrosalicylic acid, and 3,4-dinitrophenol.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon.
Cyanobacteria, also known as blue-green algae, are a diverse phylum of photosynthetic, Gram-negative bacteria and one of the largest microbial taxa. These organisms produce cyanotoxins, which are secondary metabolites that can have significant impacts on both human health and the environment. While toxins like Microcystins and Cylindrospermopsins are well-documented and have been extensively studied, other cyanotoxins, including those produced by and , remain underexplored.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Chemistry, University of Zanjan, PO Box 38791-45371 Zanjan, Iran.
The high abundance of acetone ((CH)C═O), which makes it a good candidate for oxygenated molecules, and the high reactivity of oxygen atoms in the first excited state O(D) are two well-known facts in the chemistry of the atmosphere. In this research, we prove that the singlet oxygen and acetone system is capable of proceeding through multiwell multipath reactions, leading to the production of several organic aerosols. Hence, the nature of species released by the (CH)C═O + O(D) reaction to air can be clarified by profound attention to the possible routes.
View Article and Find Full Text PDFEnviron Pollut
December 2024
State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China.
As the petrochemical industry grows, environmental and human health issues associated with petroleum refining and chemical processes also increase. Consequently, several studies have been conducted on this topic. However, the results of the current research vary, and a comprehensive review is lacking.
View Article and Find Full Text PDFACS Earth Space Chem
December 2024
Department of Chemistry, University of Colorado Boulder Boulder, Colorado 80309, United States.
Iodine in the atmosphere destroys ozone and can nucleate particles by formation of iodic acid, HIO. Recent field observations suggest iodate recycles from particles sustaining significant gas-phase IO radical concentrations (0.06 pptv) in aged stratospheric air, and in elevated dust plumes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!