Wolfram syndrome is a genetic disorder characterized by diabetes and neurodegeneration and considered as an endoplasmic reticulum (ER) disease. Despite the underlying importance of ER dysfunction in Wolfram syndrome and the identification of two causative genes, Wolfram syndrome 1 (WFS1) and Wolfram syndrome 2 (WFS2), a molecular mechanism linking the ER to death of neurons and β cells has not been elucidated. Here we implicate calpain 2 in the mechanism of cell death in Wolfram syndrome. Calpain 2 is negatively regulated by WFS2, and elevated activation of calpain 2 by WFS2-knockdown correlates with cell death. Calpain activation is also induced by high cytosolic calcium mediated by the loss of function of WFS1. Calpain hyperactivation is observed in the WFS1 knockout mouse as well as in neural progenitor cells derived from induced pluripotent stem (iPS) cells of Wolfram syndrome patients. A small-scale small-molecule screen targeting ER calcium homeostasis reveals that dantrolene can prevent cell death in neural progenitor cells derived from Wolfram syndrome iPS cells. Our results demonstrate that calpain and the pathway leading its activation provides potential therapeutic targets for Wolfram syndrome and other ER diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267371PMC
http://dx.doi.org/10.1073/pnas.1421055111DOI Listing

Publication Analysis

Top Keywords

wolfram syndrome
36
cell death
12
wolfram
9
syndrome
9
potential therapeutic
8
neural progenitor
8
progenitor cells
8
cells derived
8
ips cells
8
calpain
6

Similar Publications

Background/objectives: A heterozygous mutation in the gene is responsible for autosomal dominant non-syndromic hearing loss (DFNA6/14/38) and Wolfram-like syndrome, which is characterized by bilateral sensorineural hearing loss with optic atrophy and/or diabetes mellitus. However, detailed clinical features for the patients with the heterozygous p.A684V variant remain unknown.

View Article and Find Full Text PDF

Wolfram syndrome is an extremely rare condition composed of a tetrad of diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. When concurrently presenting with another condition, such as tuberculous meningitis, the widespread range of resulting symptoms delays the establishment of diagnosis and treatment, which results in increased patient morbidity.

View Article and Find Full Text PDF

-spectrum disorders are caused by a mutation in the gene. The term includes a wide range of rare disorders, from the most severe Wolfram syndrome with autosomal recessive inheritance to milder clinical manifestations with a single causative variant in the gene, such as Wolfram-like syndrome, low-frequency sensorineural hearing loss (LFSNHL), isolated diabetes mellitus (DM), nonsyndromic optic atrophy (OA), and isolated congenital cataracts. The aim of this study was to evaluate genotype-phenotype correlations in Polish patients with -spectrum disorders.

View Article and Find Full Text PDF

Cochlear implant in Wolfram syndrome: A case report.

Cochlear Implants Int

December 2024

Department of ENT and Head & Neck Surgery, Seth GS Medical College & K.E.M. Hospital, Mumbai, India.

Introduction: Wolfram syndrome, a rare autosomal recessive disorder, is characterised by diabetes insipidus, juvenile diabetes mellitus, optic nerve atrophy and deafness (DIDMOAD).

Case Report: We present a case of a 21-year-old male diagnosed with Wolfram syndrome who underwent cochlear implantation due to progressive hearing loss. The patient first complained of bilateral hearing loss at the age of 8 years.

View Article and Find Full Text PDF

Foecal incontinence disorders in Wolfram syndrome: a new manifestation.

J Med Genet

December 2024

Functional Unity of Ophthalmology, ERN Eye, Ophthalmological Rare Diseases Center, Georges Pompidou European Hospital, Paris, France

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!