Key drivers of biomedical innovation in cancer drug discovery.

EMBO Mol Med

Oncology Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria

Published: January 2015

Discovery and translational research has led to the identification of a series of “cancer drivers”—genes that, when mutated or otherwise misregulated, can drive malignancy. An increasing number of drugs that directly target such drivers have demonstrated activity in clinical trials and are shaping a new landscape for molecularly targeted cancer therapies. Such therapies rely on molecular and genetic diagnostic tests to detect the presence of a biomarker that predicts response. Here, we highlight some of the key discoveries bringing precision oncology to cancer patients. Large-scale “omics” approaches as well as modern, hypothesis-driven science in both academic and industry settings have significantly contributed to the field. Based on these insights, we discuss current challenges and how to foster future biomedical innovation in cancer drug discovery and development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309664PMC
http://dx.doi.org/10.15252/emmm.201404596DOI Listing

Publication Analysis

Top Keywords

biomedical innovation
8
innovation cancer
8
cancer drug
8
drug discovery
8
key drivers
4
drivers biomedical
4
cancer
4
discovery discovery
4
discovery translational
4
translational led
4

Similar Publications

Association of objective subtle cognitive difficulties with amyloid-β and tau deposition compared to subjective cognitive decline.

Eur J Nucl Med Mol Imaging

January 2025

Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China.

Purpose: This study evaluated the differences in amyloid-β (Aβ), tau deposition, and longitudinal tau deposition between subjective cognitive decline (SCD) and objective subtle cognitive difficulties (Obj-SCD).

Methods: Participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort (n = 234) and the Huashan cohort (n = 267) included individuals with Obj-SCD, SCD, subjective memory concern (SMC), and healthy controls (HC). General linear models (GLM) were used to compare baseline and longitudinal differences in Aβ and tau among the groups, and to examine the associations between these biomarkers.

View Article and Find Full Text PDF

Energy Aggregation for Illuminating Upconversion Multicolor Emission Based on Ho Ions.

ACS Appl Mater Interfaces

January 2025

School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.

Lanthanide-doped upconversion luminescent nanoparticles (UCNPs) have garnered extensive attention due to their notable anti-Stokes shifts and superior photostability. Notably, Ho-based UCNPs present a complex energy level configuration, which poses challenges in augmenting their luminescence efficiency. Herein, a rational design strategy was used to enhance the upconversion luminescence intensity of Ho ions by improving the photon absorption ability and energy utilization efficiency.

View Article and Find Full Text PDF

Unlabelled: Despite the prevalence and severity of enterococcal bacteremia (EcB), the mechanisms underlying systemic host responses to the disease remain unclear. Here, we present an extensive study that profiles molecular differences in plasma from EcB patients using an unbiased multi-omics approach. We performed shotgun proteomics and metabolomics on 105 plasma samples, including those from EcB patients and healthy volunteers.

View Article and Find Full Text PDF

Advances in Organic Fluorescent and Colorimetric Probes for The Detection of Cu and Their Applications in Cancer Cell Imaging (2020-2024).

Crit Rev Anal Chem

January 2025

Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia.

Organic fluorescence and colorimetric probes have emerged as vital tools for detecting metal ions, due to their high sensitivity, selectivity, and rapid response times. Copper, an essential trace element, plays a critical role in biological systems, yet its imbalance can lead to severe disorders such as neurodegenerative diseases, cancer, and Wilson's disease. Over the past few years, advancements in probe design have unlocked innovative avenues for not only detecting Cu in environmental and biological samples but also for visualizing its distribution through fluorescence imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!