Development of antibodies (Abs) against factor VIII (FVIII) is a severe complication of haemophilia A treatment. Recent publications suggest that domain specificity of anti-FVIII antibodies, particularly during immune tolerance induction (ITI), might be related to the outcome of the treatment. Obtaining suitable tools for a fine mapping of discontinuous epitopes could thus be helpful. The aim of this study was to map discontinuous epitopes on FVIII A2 domain using a new epitope prediction functionality of the PEPOP bioinformatics tool and a peptide inhibition assay based on the Luminex technology. We predicted, selected and synthesized 40 peptides mimicking discontinuous epitopes on the A2 domain of FVIII. A new inhibition assays using Luminex technology was performed to identify peptides able to inhibit the binding of anti-A2 Abs to A2 domain. We identified two peptides (IFKKLYHVWTKEVG and LYSRRLPKGVKHFD) able to block the binding of anti-A2 allo-antibodies to this domain. The three-dimensional representation of these two peptides on the A2 domain revealed that they are localized on a limited region of A2. We also confirmed that residues 484-508 of the A2 domain define an antigenic site. We suggest that dissection of the antibody response during ITI using synthetic peptide epitopes could provide important information for the management of patients with inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1111/hae.12575DOI Listing

Publication Analysis

Top Keywords

discontinuous epitopes
16
epitopes domain
8
factor viii
8
luminex technology
8
binding anti-a2
8
domain
7
epitopes
5
computer-predicted peptides
4
peptides mimic
4
discontinuous
4

Similar Publications

Leishmaniasis is a chronic inflammatory zoonotic illness caused by protozoan flagellates belonging to the genus. Current data suggest that over 1 billion people worldwide are susceptible to infection, primarily in tropical and subtropical countries, where up to 2 million new cases are reported annually. Therefore, the development of a vaccine is crucial to combating this disease.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV), responsible for a mosquito-borne viral illness, has rapidly spread worldwide, posing a significant global health threat. In this study, we explored the immunogenic variability of CHIKV envelope 2 (E2), a pivotal component in the anti-CHIKV immune response, using an in silico approach. After extracting the representative sequence types of the CHIKV E2 antigen, we predicted the structure-based B-cell epitopes and MHC I and II binding T-cell epitopes.

View Article and Find Full Text PDF

Bioinformatics Analysis and Immunogenicity Assessment of the Novel Multi-Stage DNA Vaccine W541 Against Mycobacterium Tuberculosis.

Immun Inflamm Dis

November 2024

Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China.

Background: Vaccination is one of the effective measures to prevent latent tuberculosis infection (LTBI) from developing into active tuberculosis (TB). Applying bioinformatics methods to pre-evaluate the biological characteristics and immunogenicity of vaccines can improve the efficiency of vaccine development.

Objectives: To evaluate the immunogenicity of TB vaccine W541 and to explore the application of bioinformatics technology in TB vaccine research.

View Article and Find Full Text PDF

The present study aimed to evaluate the key characteristics of rhoptry protein 4 (TgROP4), including physicochemical parameters, structural features, immunogenic epitopes, and virtual immune simulation, using several bioinformatics-based servers and tools. Based on allergenicity and antigenicity outputs, the TgROP4 protein seemed to have an immunogenic and non-allergenic nature. The quality of the three-dimensional (3D) structure improved after refinement, according to the outcomes of the Ramachandran plot and the ProSA-web servers.

View Article and Find Full Text PDF

Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) are overexpressed in some tumor types. The antibody-drug conjugate tusamitamab ravtansine specifically recognizes the A3-B3 domains of human CEACAM5 (hCEACAM5). To understand this specificity, here we map the epitope-paratope interface between the A3-B3 domains of hCEACAM5 (hCEACAM5) and the antigen-binding fragment of tusamitamab (tusa Fab).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!