The objectives of this study are to diagnose and prevent environmental problems that threaten urban sustainability, the impact of changes in lifestyle (diet, domestic sanitation, and motorization), and production style (agriculture, industry, and services) with the rapid urbanization on regional nitrogen (N) flows, and the water environment was quantitatively evaluated. The megacity Shanghai was chosen as a case study to investigate the temporal changes in nitrogen flow during 1980-2008 by a multidisciplinary approach (a field survey, a regional nitrogen mass balance model, input-output analysis, etc.). Although the total potential nitrogen load in Shanghai has decreased in the 2000s and water pollution problems seem to have improved, the problem has shifted and expanded to affect a wider area through the food/product chain and water/air movement. Further effective solutions that aim at material cycles are necessary and have to be implemented on a large scale.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-014-3825-4DOI Listing

Publication Analysis

Top Keywords

nitrogen flows
8
water environment
8
regional nitrogen
8
trends nitrogen
4
flows urbanization
4
urbanization shanghai
4
shanghai megacity
4
megacity effects
4
effects water
4
environment objectives
4

Similar Publications

Trophic ecology in an anchialine cave: A stable isotope study.

PLoS One

January 2025

Colección Nacional de Crustáceos, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico, Ciudad de México, Mexico.

The analysis of carbon and nitrogen stable isotopes (δ13C and δ15N) has been widely used in ecology since it allows to identify the circulation of energy in a trophic network. The anchialine ecosystem is one of the less explored aquatic ecosystems in the world and stable isotope analysis represents a useful tool to identify the routes through which energy flows and to define the trophic niches of species. Sampling and data recording was conducted in one anchialine cave, Cenote Vaca Ha, near the town of Tulum, Quintana Roo, Mexico, where seven stygobitic species endemic to the anchialine caves of the Yucatan Peninsula, plus sediment, water and vegetation samples were analyzed to determine what the main nutrient sources are.

View Article and Find Full Text PDF

Water quality assessment of Johor River Basin, Malaysia, using multivariate analysis and spatial interpolation method.

Environ Sci Pollut Res Int

January 2025

Center for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.

In the Johor River Basin, a comprehensive analysis was conducted on 24 water environmental parameters across 33 sampling sites over 3 years, encompassing both dry and wet seasons. A total of 396 water samples were collected and analyzed to calculate the Water Quality Index (WQI). To further assess water quality and pinpoint potential pollution sources, multivariate techniques such as principal component analysis (PCA) and cluster analysis (CA), alongside spatial analysis using inverse distance weighted (IDW) interpolation, were employed.

View Article and Find Full Text PDF

The examination of wastewater and effluents flowing into receiving water bodies is crucial for identifying pollutant sources and implementing scenarios to reduce them. In this study, QUAL2kw was used to identify, assess, and predict the pollutant load of a drainage canal located 6 km away from Anzali Wetland. Initially, the model was calibrated and validated with data collected in 2017.

View Article and Find Full Text PDF

A method is presented for high-precision chemical detection that integrates quantum sensing with droplet microfluidics. Using nanodiamonds (ND) with fluorescent nitrogen-vacancy (NV) centers as quantum sensors, rapidly flowing microdroplets containing analyte molecules are analyzed. A noise-suppressed mode of optically detected magnetic resonance is enabled by pairing controllable flow with microwave control of NV electronic spins, to detect analyte-induced signals of a few hundredths of a percent of the ND fluorescence.

View Article and Find Full Text PDF

Dianbu River, flowing into the western part of Chaohu Lake, has been heavily polluted, and nitrogen is one of the key factors. During three periods (wet, normal, and dry), 30 surface water samples were collected from the Dianbu River Basin as the research objects. The water chemistry, multiple stable isotopes (N-NO, O-NO, and N-NH), and a SIAR mixing model were analyzed not only to understand the spatio-temporal distribution characteristics of nitrogen and its influencing factors but also the sources of nitrogen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!