Imidazole inhibits autophagy flux by blocking autophagic degradation and triggers apoptosis via increasing FoxO3a-Bim expression.

Int J Oncol

Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China.

Published: February 2015

Imidazole, an organic alkaloid, is an important pharmacophore in drug discovery. Anti-neoplastic potential of imidazole derivatives has been documented in several studies; however, mechanisms by which tumor cells respond to these stimuli remain to be elucidated. Autophagy and apoptosis have key roles in tumorigenesis and tumor treatment. In this study, we systematically examined autophagic events induced by imidazole in HEC-1B cells. Accumulation of autophagic vacuoles in imidazole-treated cells was verified by conversion of LC3 protein, as well as confocal and transmission electron microscopy. Furthermore, imidazole blocked autophagic degradation by impairing maturation of autophagosomes into autolysosomes. Concurrently, imidazole treatment induced apoptosis in HEC-1B cells, accompanied by activation of caspase 9 and 3. The proapoptotic effect was mediated by increased Bim expression. Moreover, imidazole upregulated the protein level of Foxo3a and induced its increased nuclear localisation. In addition, siRNA-mediated silencing of FoxO3a effectively attenuated imidazole-induced Bim upregulation and cell death, indicating direct involvement of this pathway in the imidazole-induced apoptosis. Taken together, our data provided a molecular link between imidazoles and anticancer therapies; understanding of these properties of imidazole is essential for development of effective cancer therapeutics using imidazoles.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2014.2771DOI Listing

Publication Analysis

Top Keywords

imidazole
8
autophagic degradation
8
expression imidazole
8
hec-1b cells
8
imidazole inhibits
4
inhibits autophagy
4
autophagy flux
4
flux blocking
4
autophagic
4
blocking autophagic
4

Similar Publications

Background/objectives: Histamine intolerance is primarily caused by a deficiency in the diamine oxidase (DAO) enzyme at the intestinal level. The reduced histamine degradation in the gut leads to its accumulation in plasma, thereby causing multiple clinical manifestations, such as urticaria, diarrhea, headache, dyspnea, or tachycardia, among others. The dietary management of this food intolerance consists of the follow-up of a low-histamine diet, often combined with DAO supplementation.

View Article and Find Full Text PDF

Inflammation is a physiological response of the immune system to infectious agents or tissue injury, which involves a cascade of vascular and cellular events and the activation of biochemical pathways depending on the type of harmful agent and the stimulus generated. The Kunitz peptide HCIQ2c1 of sea anemone is a strong protease inhibitor and exhibits neuroprotective and analgesic activities. In this study, we investigated the anti-inflammatory potential of HCIQ2c1 in histamine- and lipopolysaccharide (LPS)-activated RAW 264.

View Article and Find Full Text PDF

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes in both Type 1 (T1D) and Type 2 (T2D). While there are no specific medications to prevent or treat DPN, certain strategies can help halt its progression. In T1D, maintaining tight glycemic control through insulin therapy can effectively prevent or delay the onset of DPN.

View Article and Find Full Text PDF

Antimicrobial Activity and Mode of Action of N-Heterocyclic Carbene Silver(I) Complexes.

Molecules

December 2024

Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Montesano 49, 80131 Naples, Italy.

Silver drugs have played a vital role in human healthcare for the treatment of infections for many centuries. Currently, due to antibiotic resistance, a potential scenario or the application of silver complexes may arise as substitutes for conventional antibiotics. In this perspective, N-heterocyclic carbene (NHC) ligands have been selected as carrier molecules for silver ions.

View Article and Find Full Text PDF

Progress in Continuous Flow Synthesis of Hydrogen-Bonded Organic Framework Material Synthons.

Molecules

December 2024

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.

Hydrogen-bonded organic framework (HOF) materials are typically formed by the self-assembly of small organic units (synthons) with specific functional groups through hydrogen bonding or other interactions. HOF is commonly used as an electrolyte for batteries. Well-designed HOF materials can enhance the proton exchange rate, thereby boosting battery performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!