Breast cancer (BC) is one of the five most frequent cancers in the world. Despite earlier diagnosis and development of specific treatments, mortality has only declined of about 30 % during the past two decades. Two of the main reasons are the emergence of drug resistance and the absence of specific therapy for triple negative breast cancers (TNBC), which are characterized by a poor prognosis due to high proliferation rate. Therefore, the future goal of the fight against BC will be to find new therapeutic approaches to overcome drug resistances and cure TNBC. Recent research on gene expression profiles linked to the different types of BC cells have led to consider the use of epigenetic modulators to modulate the expression of genes deregulated in cancer. The preliminary encouraging results have demonstrated a positive effect of DNA Methyl Transferase (DNMT) and Histone DeAcetylase (HDAC) inhibitors on different types of BC, as well as drug-resistant cells, with low side effects. In this review, we will describe the different epigenetic modulators currently used or investigated in BC therapy research in vitro as well as preclinical and clinical trials, and promising compounds, which might be used in future BC therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-1804-1_25 | DOI Listing |
Nat Methods
January 2025
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
The phenotypic and functional states of cells are modulated by a complex interactive molecular hierarchy of multiple omics layers, involving the genome, epigenome, transcriptome, proteome and metabolome. Spatial omics approaches have enabled the study of these layers in tissue context but are often limited to one or two modalities, offering an incomplete view of cellular identity. Here we present spatial-Mux-seq, a multimodal spatial technology that allows simultaneous profiling of five different modalities: two histone modifications, chromatin accessibility, whole transcriptome and a panel of proteins at tissue scale and cellular level in a spatially resolved manner.
View Article and Find Full Text PDFSci Rep
January 2025
Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
Social cognition, which ranges from recognizing social cues to intricate inferential reasoning, is influenced by environmental factors and epigenetic mechanisms. Notably, methylation variations in stress-related genes like brain-derived neurotrophic factor (BDNF) and the oxytocin receptor (OXTR) are linked to distinct social cognitive functions and exhibit sex-specific differences. This study investigates how these methylation differences affect social cognition across sexes, focusing on both perceptual and inferential cognitive levels.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France.
Dendritic cells (DC) are key players in antitumor immune responses. Tumors exploit their plasticity to escape immune control; their aberrant surface carbohydrate patterns (e.g.
View Article and Find Full Text PDFGut
January 2025
Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
Background: Fasting-mimicking diet (FMD) boosts the antitumour immune response in patients with colorectal cancer (CRC). The gut microbiota is a key host immunity regulator, affecting physiological homeostasis and disease pathogenesis.
Objective: We aimed to investigate how FMD protects against CRC via gut microbiota modulation.
Eur J Pharmacol
January 2025
Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
Colorectal cancer (CRC) is a significant global health challenge, marked by varying incidence and mortality rates across different regions. The pathogenesis of CRC involves multiple stages, including initiation, promotion, progression, and metastasis, influenced by genetic and epigenetic factors. The chaperone protein glucose-regulated protein 78 (GRP78), crucial in regulating the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, plays a pivotal role in CRC pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!