A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

NR5A1 prevents centriole splitting by inhibiting centrosomal DNA-PK activation and β-catenin accumulation. | LitMetric

Background: Adrenogonadal cell growth and differentiation are controlled by nuclear receptor NR5A1 (Ad4BP/SF-1) that regulates the expression of adrenal and gonadal genes. In addition, SF-1 also resides in the centrosome and controls centrosome homeostasis by restricting the activity of centrosomal DNA-PK and CDK2/cyclin A.

Results: Here we show that SF-1 depletion resulted in centriole splitting and amplification due to aberrant activation of DNA-PK in the centrosome of mouse adrenocortical Y1 cells. In the absence of SF-1, GSK3β was aberrantly phosphorylated during G1 phase and β-catenin was accumulated in the centrosome, but not in the nucleus. DNA-PK inhibitor vanillin reversed these phenomena. SF-1 overexpression led to inhibition of centrosomal DNA-PK activation caused by SF-1 depletion. Both full-length SF-1 and truncated SF-1 devoid of its DNA-binding domain rescued the multiple centrosome phenotype caused by SF-1 depletion, indicating that the effect of SF-1 in the centrosome is not contributed by its DNA-binding domain. Furthermore, SF-1 interacted with cyclin A in the centrosome, but not in the nucleus. Depletion of SF-1 also resulted in centriole splitting, genomic instability and reduced growth of mouse testicular Leydig MA10 cells.

Conclusion: Centrosomal DNA-PK signaling triggers the accumulation of β-catenin, leading to centrosome over-duplication and centriole splitting. This cascade of centrosomal events results in genomic instability and reduced cell numbers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4262199PMC
http://dx.doi.org/10.1186/s12964-014-0055-9DOI Listing

Publication Analysis

Top Keywords

centriole splitting
16
centrosomal dna-pk
16
sf-1 depletion
12
sf-1
11
dna-pk activation
8
centrosome
8
centrosome nucleus
8
caused sf-1
8
dna-binding domain
8
genomic instability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!