This study explored auditory speech processing and comprehension abilities in 5-8-year-old monolingual Hungarian children with functional articulation disorders (FADs) and their typically developing peers. Our main hypothesis was that children with FAD would show co-existing auditory speech processing disorders, with different levels of these skills depending on the nature of the receptive processes. The tasks included (i) sentence and non-word repetitions, (ii) non-word discrimination and (iii) sentence and story comprehension. Results suggest that the auditory speech processing of children with FAD is underdeveloped compared with that of typically developing children, and largely varies across task types. In addition, there are differences between children with FAD and controls in all age groups from 5 to 8 years. Our results have several clinical implications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/02699206.2014.983615 | DOI Listing |
Perspect ASHA Spec Interest Groups
August 2023
School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA.
Purpose: Speech-language pathologists (SLPs) are tasked with integrating the principles of evidence-based practice (EBP) to provide effective and efficient assessment and intervention services that best support clients and their families. As new research, technologies, and perspectives emerge, SLPs are required to adapt their clinical practices to meet these changes while maintaining high-quality evidence-based services. Through an illustrative case study, we aim to demonstrate the process of applying EBP principles - including research evidence, client and family perspectives, and clinical expertise - to a complexity-based speech sound intervention delivered via telepractice.
View Article and Find Full Text PDFFront Neurosci
January 2025
Neurology Associate P.C., Lincoln, NE, United States.
Introduction: As a hallmark feature of amyotrophic lateral sclerosis (ALS), bulbar involvement significantly impacts psychosocial, emotional, and physical health. A validated objective marker is however lacking to characterize and phenotype bulbar involvement, positing a major barrier to early detection, progress monitoring, and tailored care. This study aimed to bridge this gap by constructing a multiplex functional mandibular muscle network to provide a novel objective measurement tool of bulbar involvement.
View Article and Find Full Text PDFIn this paper, we present StyleTTS 2, a text-to-speech (TTS) model that leverages style diffusion and adversarial training with large speech language models (SLMs) to achieve human-level TTS synthesis. StyleTTS 2 differs from its predecessor by modeling styles as a latent random variable through diffusion models to generate the most suitable style for the text without requiring reference speech, achieving efficient latent diffusion while benefiting from the diverse speech synthesis offered by diffusion models. Furthermore, we employ large pre-trained SLMs, such as WavLM, as discriminators with our novel differentiable duration modeling for end-to-end training, resulting in improved speech naturalness.
View Article and Find Full Text PDFTrends Hear
January 2025
Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China.
Wide dynamic range compression (WDRC) and noise reduction both play important roles in hearing aids. WDRC provides level-dependent amplification so that the level of sound produced by the hearing aid falls between the hearing threshold and the highest comfortable level of the listener, while noise reduction reduces ambient noise with the goal of improving intelligibility and listening comfort and reducing effort. In most current hearing aids, noise reduction and WDRC are implemented sequentially, but this may lead to distortion of the amplitude modulation patterns of both the speech and the noise.
View Article and Find Full Text PDFSci Rep
January 2025
Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO, 63110, USA.
Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13-40 mm) afforded by the HD-DOT grid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!