Human activities may compromise biodiversity if external stressors such as nutrient enrichment endanger overall network stability by inducing unstable dynamics. However, some ecosystems maintain relatively high diversity levels despite experiencing continuing disturbances. This indicates that some intrinsic properties prevent unstable dynamics and resulting extinctions. Identifying these 'ecosystem buffers' is crucial for our understanding of the stability of ecosystems and an important tool for environmental and conservation biologists. In this vein, weak interactions have been suggested as stabilizing elements of complex systems, but their relevance has rarely been tested experimentally. Here, using network and allometric theory, we present a novel concept for a priori identification of species that buffer against externally induced instability of increased population oscillations via weak interactions. We tested our model in a microcosm experiment using a soil food-web motif. Our results show that large-bodied species feeding at the food web's base, so called 'trophic whales', can buffer ecosystems against unstable dynamics induced by nutrient enrichment. Similar to the functionality of chemical or mechanical buffers, they serve as 'biotic buffers' that take up stressor effects and thus protect fragile systems from instability. We discuss trophic whales as common functional building blocks across ecosystems. Considering increasing stressor effects under anthropogenic global change, conservation of these network-intrinsic biotic buffers may help maintain the stability and diversity of natural ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1365-2656.12324 | DOI Listing |
Int J Biol Macromol
January 2025
College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, Shandong, PR China. Electronic address:
The presence of a synergistic effect between carrier and insecticide in controlled release formulations is highly desirable to improve efficacy to target pests and reduce insecticide use. Herein, controlled release microparticles of avermectin (AVM) were fabricated using natural chitosan (CTS) as a carrier by a pH adjustment method. The resulted AVM@CTS microparticles displayed high encapsulation efficiency (73.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia.
Investigating effective nanomaterials for the detection of hydroxyurea anticancer drugs is essential for promoting human health and safeguarding environmental integrity. This research utilized first-principles estimations for examining the adhesion and electronic characteristics of hydroxyurea (HU) on both pristine and Si-decorated innovative two-dimensional boron nitride allotrope, known as Irida analogous (Ir-BNNS). Analyzing the adsorption energy revealed that the HU molecule has a significant interaction (E = -1.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Institute of Biology, Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland.
Background: Upland cotton (Gossypium hirsutum) plants constitutively store volatile terpenes in their leaves, which are steadily emitted at low levels. Herbivory leads to a greater release of these stored volatiles. Additionally, damaged plants increase the accumulation of volatile terpenes in their leaves and begin to synthesize and emit other terpenes and additional compounds.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
Water dynamics are investigated in binary osmolyte-water mixtures, exhibiting a microscopic heterogeneity driven by molecular aggregation, on the basis of molecular dynamics (MD) simulation studies. The protecting osmolyte TMAO molecules in solution are evenly dispersed without the formation of noticeable osmolyte aggregates, while the denaturant TMU molecules aggregate readily, generating microscopic heterogeneity in the spatial distribution of component molecules in TMU-water mixtures. A combined study of MD simulation with graph theoretical analysis and spatial inhomogeneity measurement with -values in the two osmolyte solutions revealed that the translational and rotational motions of water in the microheterogeneous environment of TMU-water mixtures are less hindered than those in the homogeneous media of TMAO-water mixtures.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics, University of Michigan, Ann Arbor, MI, USA.
Excitons, bound electron-hole pairs, influence the optical properties in strongly interacting solid-state systems and are typically most stable and pronounced in monolayer materials. Bulk systems with large exciton binding energies, on the other hand, are rare and the mechanisms driving their stability are still relatively unexplored. Here, we report an exceptionally large exciton binding energy in single crystals of the bulk van der Waals antiferromagnet CrSBr.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!