This work has demonstrated that the major method of estimating the amount of unknown IAA conjugates-base hydrolysis-can be significantly complicated by chemical artifacts such as glucobrassicin or protein degradation. The concept of 'bound auxin' traces its origin back to more than 80 years ago and has driven research on the sources and forms of these plant hormones since. Indeed, analytical studies have demonstrated that the majority of cellular auxin is conjugated to simple sugars, cyclitols, glycans, amino acids, and other biomolecules. A number of studies have confirmed the enzymatic systems responsible for the synthesis and hydrolysis of a number of such conjugates in Arabidopsis thaliana and some of these compounds have been identified in situ. However, the amount of indole-3-acetic acid (IAA) released upon treating Arabidopsis tissue extracts with base, a commonly employed technique for estimating the amount of IAA conjugates, greatly exceeded the summation of all the IAA conjugates known individually to be present in Arabidopsis. This discrepancy has remained as an unsolved question. In this study, however, we found that a significant portion of the IAA found after base treatment could be attributed to chemical conversions other than conjugate hydrolysis. Specifically, we showed that glucobrassicin conversion, previously thought to occur at insignificant levels, actually accounted for the majority of solvent soluble IAA released and that proteinaceous tryptophan degradation accounted for a large portion of solvent insoluble IAA. These studies clearly demonstrated the limits associated with using a harsh technique like base hydrolysis in determining IAA conjugates and support using more direct approaches such as mass spectrometry-based strategies for unambiguous characterizations of the total complement of IAA conjugates in new plant materials under study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-014-2206-z | DOI Listing |
Plant Physiol Biochem
December 2024
Department of Pomology, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt; Biology Research & Studies Institute, Assiut University, Assiut, 71526, Egypt. Electronic address:
Smart nanohybrid technology with potential advantages to plants has recently been developed formanaging the widespread pollution of heavy metals. Herein, we disclose a novel strategy to combat Pb stress in strawberry (Fragaria spp. cv.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Horticulture, Anhui Agricultural University, Hefei 230036, China.
Iron (Fe) deficiency poses a major threat to pear ( spp.) fruit yield and quality. The () plays a vital part in plant stress responses.
View Article and Find Full Text PDFPhytochemistry
February 2025
Department of Biochemistry, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland.
Osmotic shock is the first step of high salt or drought action that involves biochemical and molecular changes during plant response to these unfavorable conditions. Indole-3-acetyl-aspartate (IAA-aspartate, IAA-Asp) is the main amide conjugate of auxin in pea (Pisum sativum L.) tissues.
View Article and Find Full Text PDFPhysiol Plant
November 2024
Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain.
Auxins play a critical role in several plant developmental processes and their endogenous levels are regulated at multiple levels. The enzymes of the GRETCHEN HAGEN 3 (GH3) protein family catalyze the conjugation of amino acids to indoleacetic acid (IAA), the major endogenous auxin. The GH3 proteins are encoded by multiple redundant genes in plant genomes, making it difficult to perform functional genetic studies to understand their role in auxin homeostasis.
View Article and Find Full Text PDFNew Phytol
November 2024
Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
Lignin, a complex heterogenous polymer present in virtually all plant cell walls, plays a critical role in protecting plants from various stresses. However, little is known about how lignin modifications in sorghum will impact plant defense against sugarcane aphids (SCA), a key pest of sorghum. We utilized the sorghum brown midrib (bmr) mutants, which are impaired in monolignol synthesis, to understand sorghum defense mechanisms against SCA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!