For decades, it has been largely unknown to what extent multiple functional networks spatially overlap/interact with each other and jointly realize the total cortical function. Here, by developing novel sparse representation of whole-brain fMRI signals and by using the recently publicly released large-scale Human Connectome Project high-quality fMRI data, we show that a number of reproducible and robust functional networks, including both task-evoked and resting state networks, are simultaneously distributed in distant neuroanatomic areas and substantially spatially overlapping with each other, thus forming an initial collection of holistic atlases of functional networks and interactions (HAFNIs). More interestingly, the HAFNIs revealed two distinct patterns of highly overlapped regions and highly specialized regions and exhibited that these two patterns of areas are reciprocally localized, revealing a novel organizational principle of cortical function.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2014.2369495DOI Listing

Publication Analysis

Top Keywords

functional networks
16
cortical function
12
holistic atlases
8
atlases functional
8
networks interactions
8
networks
5
functional
4
interactions reveal
4
reveal reciprocal
4
reciprocal organizational
4

Similar Publications

Exploring markers in nursing care of prostate cancer.

Medicine (Baltimore)

January 2025

Urology and Metabolic Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Prostate cancer is epithelial malignant prostate hyperplasia caused by a tumor. We found prostate cancer GSE141551 and GSE200879 profiles from gene expression omnibus database, followed by differentially expressed genes (DEGs) analysis, weighted gene co-expression network analysis, protein-protein interaction analysis, gene function enrichment analysis, and comparative toxicology database analysis. Finally, the gene expression heat map was drawn, and miRNA information regulating core DEGs was retrieved.

View Article and Find Full Text PDF

The roles of STAT1, CASP8, and MYD88 in the care of ischemic stroke.

Medicine (Baltimore)

January 2025

Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

Objective: Epilepsy is a common neurological disease affecting nearly 1% of the global population, and temporal lobe epilepsy (TLE) is the most common type. Patients experience recurrent seizures and chronic cognitive deficits that can impact their quality of life, ability to work, and independence. These cognitive deficits often extend beyond the temporal lobe and are not well understood.

View Article and Find Full Text PDF

The cytotoxic T-lymphocyte antigen-4 (CTLA4) is essential in controlling T cell activity within the immune system. Thus, uncovering the molecular dynamics of single nucleotide polymorphisms (SNPs) within the CTLA4 gene is critical. We identified the non-synonymous SNPs (nsSNPs), examined their impact on protein stability, and identified the protein sequences associated with them in the human CTLA4 gene.

View Article and Find Full Text PDF

Background: The morbidity and mortality of sepsis remain high, and so far specific diagnostic and therapeutic means are lacking.

Objective: To screen novel biomarkers for sepsis.

Methods: Raw sepsis data were downloaded from the Chinese National Genebank (CNGBdb) and screened for differentially expressed RNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!