Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

PLoS One

Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America; Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America; Harry S. Truman Veterans Hospital, Columbia, Missouri, United States of America.

Published: January 2016

Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242640PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0113531PLOS

Publication Analysis

Top Keywords

age fruarg
24
bv-2 cells
12
fruarg
9
age
9
proteomic analysis
8
aged garlic
8
garlic extract
8
microglial cells
8
neuroinflammatory responses
8
fruarg treatments
8

Similar Publications

Garlic () has been widely used for culinary and medicinal purposes. Aged garlic extract (AGE) and sulfur-containing compounds, including S-allylcysteine (SAC) are well documented botanical active components of garlic. AGE is prepared by the prolonged extraction of fresh garlic with aqueous ethanol and is considered a nutritional supplement with potential to promote human health.

View Article and Find Full Text PDF

Development of a Method and Validation for the Quantitation of FruArg in Mice Plasma and Brain Tissue Using UPLC-MS/MS.

ACS Omega

October 2016

Department of Chemistry, Center for Botanical Interaction Studies, and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States; Department of Chemistry, Center for Botanical Interaction Studies, and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States.

Aged garlic extract (AGE) is a popular nutritional supplement and is believed to promote health benefits by exhibiting antioxidant and anti-inflammatory activities and hypolipidemic and antiplatelet effects. We have previously identified -α-(1-deoxy-d-fructos-1-yl)-l-arginine (FruArg) as a major contributor to the bioactivity of AGE in BV-2 microglial cells whereby it exerted a significant ability to attenuate lipopolysaccharide-induced neuroinflammatory responses and to regulate the Nrf2-mediated antioxidant response. Here, we report on a sensitive ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) protocol that was validated for the quantitation of FruArg in mouse plasma and brain tissue samples.

View Article and Find Full Text PDF

Aged garlic extract (AGE) is widely used as a dietary supplement on account of its protective effects against oxidative stress and inflammation. But less is known about specific molecular targets of AGE and its bioactive components, including N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). Our recent study showed that both AGE and FruArg significantly attenuate lipopolysaccharide (LPS)-induced neuroinflammatory responses in BV-2 microglial cells.

View Article and Find Full Text PDF

Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

PLoS One

January 2016

Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America; Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America; Harry S. Truman Veterans Hospital, Columbia, Missouri, United States of America.

Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach.

View Article and Find Full Text PDF

Aged garlic extract (AGE) has been shown to have antioxidant activity. The organosulfur compounds, S-allyl-L-cysteine and S-allylmercapto-L-cysteine, are responsible, at least in part, for the antioxidant activity of AGE. To identify major active components, we fractionated AGE, using hydrogen peroxide scavenging activity as an antioxidative index.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!