In vitro mammalian mutagenicity of complex polycyclic aromatic hydrocarbon mixtures in contaminated soils.

Environ Sci Technol

Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Columbine Driveway, Tunney's Pasture 0803A, Ottawa, Ontario Canada , K1A 0K9.

Published: February 2015

This study employed an in vitro version of the lacZ transgenic rodent mutation assay to assess the mutagenicity of nonpolar neutral and semipolar aromatic soil fractions from 10 PAH-contaminated sites, and evaluated the assumption of dose additivity that is routinely employed to calculate the risk posed by PAH mixtures. Significant mutagenic activity was detected in all nonpolar neutral fractions, and 8 of 10 semipolar aromatic fractions (nonpolar > semipolar). Mutagenic activity of synthetic PAH mixtures that mimic the PAH content of the soils (i.e., 5-PAH or 16-PAH mix) were greater than that of the PAH-containing soil fractions, with 5-PAH mix >16-PAH-mix. Predictions of mutagenic activity, calculated as the sum of the contributions from the mutagenic mixture components, were all within 2-fold of the observed activity of the nonpolar neutral fractions, with one exception. Observed differences in mutagenic activity are likely the result of dynamic metabolic processes, involving a complex interplay of AhR agonsim and saturation of metabolic machinery by competitive inhibition of mixture components. The presence of hitherto unidentified polar compounds present in PAH-contaminated soils may also contribute to overall hazard; however, these compounds are generally not included in current contaminated site risk assessment protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es504465fDOI Listing

Publication Analysis

Top Keywords

mutagenic activity
16
nonpolar neutral
12
semipolar aromatic
8
soil fractions
8
pah mixtures
8
neutral fractions
8
mixture components
8
fractions
5
mutagenic
5
activity
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!